metadata
base_model: stabilityai/stable-diffusion-2-1
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
Text-to-image finetuning - CasperLD/cartoon_generation_sd_v1
This pipeline was finetuned from stabilityai/stable-diffusion-2-1 on the CasperLD/cartoons_with_blip_captions_512_max_3000_at_fg_s_sp dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['cartoon character with big eyes']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("CasperLD/cartoon_generation_sd_v1", torch_dtype=torch.float16)
prompt = "cartoon character with big eyes"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 25
- Learning rate: 1e-05
- Batch size: 4
- Gradient accumulation steps: 1
- Image resolution: 512
- Mixed-precision: fp16
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]