hatespeech_ast / README.md
Luca-Engel's picture
Update README.md
59dec1f verified
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: DL_Audio_Hatespeech_ast_trainer_push
    results: []
widget:
  - src: example_hate_speech.wav
    example_title: Hate Speech Example
  - src: example_non_hate.wav
    example_title: Non-Hate Speech Example

hatespeech_ast

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6306
  • Accuracy: 0.6486
  • Recall: 0.8368
  • Precision: 0.6136
  • F1: 0.7080

And the following results on the test set:

  • Loss: 0.6441
  • Accuracy: 0.6318
  • Recall: 0.8191
  • Precision: 0.6001
  • F1: 0.6927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.753 1.0 310 0.6793 0.5559 0.2258 0.6968 0.3411
0.6598 2.0 620 0.6447 0.6265 0.7575 0.6066 0.6737
0.6374 3.0 930 0.6306 0.6486 0.8368 0.6136 0.7080
0.5586 4.0 1240 0.7678 0.6091 0.9144 0.5727 0.7043
0.4008 5.0 1550 0.8134 0.6212 0.5515 0.6511 0.5972
0.2072 6.0 1860 1.0746 0.6265 0.7448 0.6088 0.6700
0.0904 7.0 2170 2.0297 0.6273 0.6878 0.6209 0.6526
0.0203 8.0 2480 3.0627 0.6236 0.6307 0.6302 0.6305
0.0244 9.0 2790 3.2017 0.6297 0.7013 0.6206 0.6585
0.0 10.0 3100 3.2659 0.6313 0.6331 0.6392 0.6361

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.3.2
  • Tokenizers 0.19.1