DandinPower's picture
End of training
bd89420 verified
|
raw
history blame
2.11 kB
metadata
language:
  - zh
license: other
library_name: peft
tags:
  - trl
  - sft
  - nycu-112-2-deeplearning-hw2
  - generated_from_trainer
base_model: taide/Llama3-TAIDE-LX-8B-Chat-Alpha1
datasets:
  - DandinPower/ZH-Reading-Comprehension-Llama-Instruct
model-index:
  - name: taide_llama3_8b_lora_completion_only
    results: []

taide_llama3_8b_lora_completion_only

This model is a fine-tuned version of taide/Llama3-TAIDE-LX-8B-Chat-Alpha1 on the DandinPower/ZH-Reading-Comprehension-Llama-Instruct dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 700
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.1474 0.3690 250 0.1201
0.1072 0.7380 500 0.1581
0.098 1.1070 750 0.1148
0.0963 1.4760 1000 0.1044
0.0502 1.8450 1250 0.1064
0.05 2.2140 1500 0.1017
0.0239 2.5830 1750 0.1015
0.0443 2.9520 2000 0.0968

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1