|
--- |
|
language: |
|
- zh |
|
- bo |
|
- en |
|
base_model: |
|
- meta-llama/Meta-Llama-3-8B-Instruct |
|
pipeline_tag: text-generation |
|
tags: |
|
- pytorch |
|
--- |
|
# TibetaMind: Advanced Tibetan Language Model |
|
**TibetaMind** is an advanced language model based on the Llama 3-8B-Instruct architecture, further fine-tuned using extensive Tibetan language corpora. Through this specialized fine-tuning, **TibetaMind** has significantly enhanced its ability to comprehend, process, and generate Tibetan language content, while also providing seamless cross-language understanding between Tibetan and Chinese. This allows for accurate translation and communication across these languages. **TibetaMind** can be applied to a variety of tasks, including Tibetan text generation, summarization, and translation between Tibetan and Chinese, playing a pivotal role in preserving and advancing Tibetan linguistics in the digital age. |
|
|
|
# How to use |
|
|
|
## Use with transformers |
|
|
|
### Transformers AutoModelForCausalLM |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "DaydreamerF/TibetaMind" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "如何用藏语表达下面汉语的意思:汉语句子:大狗在楼里不好养。"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
``` |