Dev372's picture
End of training
209c7b4 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1.1
metrics:
  - wer
model-index:
  - name: English Whisper Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical
          type: Dev372/Medical_STT_Dataset_1.1
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.283680067931677

English Whisper Model

This model is a fine-tuned version of openai/whisper-tiny.en on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1252
  • Wer: 6.2837

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 18
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2359 0.2825 100 1.0423 10.4935
0.6633 0.5650 200 0.6451 9.5072
0.4199 0.8475 300 0.3864 8.5078
0.1541 1.1299 400 0.1895 7.4202
0.1228 1.4124 500 0.1642 6.8781
0.1132 1.6949 600 0.1471 6.8422
0.1076 1.9774 700 0.1356 6.3261
0.0717 2.2599 800 0.1333 6.1334
0.0682 2.5424 900 0.1284 6.3947
0.0627 2.8249 1000 0.1265 6.5972
0.0367 3.1073 1100 0.1261 6.2478
0.0452 3.3898 1200 0.1265 6.3784
0.0374 3.6723 1300 0.1257 6.3980
0.0523 3.9548 1400 0.1248 6.1596
0.031 4.2373 1500 0.1252 6.2837

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1