|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny.en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Dev372/Medical_STT_Dataset_1.1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: English Whisper Model |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Medical |
|
type: Dev372/Medical_STT_Dataset_1.1 |
|
args: 'split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 6.283680067931677 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# English Whisper Model |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1252 |
|
- Wer: 6.2837 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 18 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 1500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 1.2359 | 0.2825 | 100 | 1.0423 | 10.4935 | |
|
| 0.6633 | 0.5650 | 200 | 0.6451 | 9.5072 | |
|
| 0.4199 | 0.8475 | 300 | 0.3864 | 8.5078 | |
|
| 0.1541 | 1.1299 | 400 | 0.1895 | 7.4202 | |
|
| 0.1228 | 1.4124 | 500 | 0.1642 | 6.8781 | |
|
| 0.1132 | 1.6949 | 600 | 0.1471 | 6.8422 | |
|
| 0.1076 | 1.9774 | 700 | 0.1356 | 6.3261 | |
|
| 0.0717 | 2.2599 | 800 | 0.1333 | 6.1334 | |
|
| 0.0682 | 2.5424 | 900 | 0.1284 | 6.3947 | |
|
| 0.0627 | 2.8249 | 1000 | 0.1265 | 6.5972 | |
|
| 0.0367 | 3.1073 | 1100 | 0.1261 | 6.2478 | |
|
| 0.0452 | 3.3898 | 1200 | 0.1265 | 6.3784 | |
|
| 0.0374 | 3.6723 | 1300 | 0.1257 | 6.3980 | |
|
| 0.0523 | 3.9548 | 1400 | 0.1248 | 6.1596 | |
|
| 0.031 | 4.2373 | 1500 | 0.1252 | 6.2837 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|