SOLARC-M-10.7B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
4ede24d verified
|
raw
history blame
4.63 kB
---
language:
- ko
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- merge
pipeline_tag: text-generation
model-index:
- name: SOLARC-M-10.7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.31
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.85
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
---
**The license is `cc-by-nc-sa-4.0`.**
# **🐻‍❄️SOLARC-M-10.7B🐻‍❄️**
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)
## Model Details
**Model Developers** Seungyoo Lee(DopeorNope)
I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
SOLARC-M-10.7B is an auto-regressive language model based on the SOLAR architecture.
---
## **Base Model**
[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
## **Implemented Method**
I have built a model using the merge method, utilizing each of these models as the base.
---
# Implementation Code
## Load model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "DopeorNope/SOLARC-M-10.7B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DopeorNope__SOLARC-M-10.7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.42|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot) |88.41|
|MMLU (5-Shot) |66.31|
|TruthfulQA (0-shot) |71.85|
|Winogrande (5-shot) |83.35|
|GSM8k (5-shot) |65.43|