File size: 2,045 Bytes
4a2251a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093a0b
 
4a2251a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093a0b
4abdc15
4a2251a
 
 
4abdc15
2093a0b
4a2251a
2093a0b
4a2251a
 
 
4abdc15
 
2093a0b
 
 
 
 
 
 
 
 
4a2251a
 
 
 
2093a0b
 
4a2251a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
datasets:
- cuad-qa
model-index:
- name: cuad_qa_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cuad_qa_model

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the cuad-qa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2765
- Jaccard: 0.3298

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 3
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Jaccard |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 4.0374        | 0.3224 | 300  | 2.0316          | 0.3097  |
| 2.2477        | 0.6448 | 600  | 1.4555          | 0.3400  |
| 2.0917        | 0.9672 | 900  | 1.3932          | 0.3600  |
| 1.7293        | 1.2891 | 1200 | 1.2932          | 0.3288  |
| 1.709         | 1.6115 | 1500 | 1.2642          | 0.3280  |
| 1.7021        | 1.9339 | 1800 | 1.2142          | 0.3456  |
| 1.3928        | 2.2558 | 2100 | 1.2952          | 0.3295  |
| 1.3582        | 2.5782 | 2400 | 1.2791          | 0.3298  |
| 1.3509        | 2.9006 | 2700 | 1.2765          | 0.3298  |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0