GiordanoB's picture
Update README.md
1e8f924
|
raw
history blame
2.86 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: mT5_multilingual_XLSum-sumarizacao-PTBR
    results: []

mT5_multilingual_XLSum-sumarizacao-PTBR

This model is a fine-tuned version of csebuetnlp/mT5_multilingual_XLSum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3870
  • Rouge1: 42.0195
  • Rouge2: 24.9493
  • Rougel: 32.3653
  • Rougelsum: 37.9982
  • Gen Len: 77.0

Model description

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))

model_name = "GiordanoB/mT5_multilingual_XLSum-sumarizacao-PTBR" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

input_ids = tokenizer(
    [WHITESPACE_HANDLER(sumariosDuplos[i])],
    return_tensors="pt",
    padding="max_length",
    truncation=True,
    max_length=512
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    max_length=200,
    min_length=75,
    no_repeat_ngram_size=2,
    num_beams=5
)[0]

summary = tokenizer.decode(
    output_ids,
    skip_special_tokens=True,
    clean_up_tokenization_spaces=False
)

sumariosFinal.append(summary)
print(i,"\n",summary,"\n")

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 15 1.5687 32.2316 18.9289 23.918 27.7216 51.5714
No log 2.0 30 1.4530 41.2297 26.1883 30.8012 37.1727 69.5714
No log 3.0 45 1.4043 40.8986 24.4993 31.349 36.8782 72.2143
No log 4.0 60 1.3908 42.1019 25.5555 32.9018 38.0202 74.5
No log 5.0 75 1.3870 42.0195 24.9493 32.3653 37.9982 77.0

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1