Bart_mediasum / README.md
GlycerinLOL's picture
Model save
a045ce9 verified
metadata
license: apache-2.0
base_model: facebook/bart-large
tags:
  - generated_from_trainer
datasets:
  - mediasum
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: Bart_mediasum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: mediasum
          type: mediasum
          config: roberta_prepended
          split: validation
          args: roberta_prepended
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.3236
          - name: Precision
            type: precision
            value: 0.8858
          - name: Recall
            type: recall
            value: 0.8739
          - name: F1
            type: f1
            value: 0.8795

Bart_mediasum

This model is a fine-tuned version of facebook/bart-large on the mediasum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9021
  • Rouge1: 0.3236
  • Rouge2: 0.1651
  • Rougel: 0.2953
  • Rougelsum: 0.2953
  • Gen Len: 15.7946
  • Precision: 0.8858
  • Recall: 0.8739
  • F1: 0.8795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
2.1171 1.0 4621 2.0135 0.3138 0.1556 0.2853 0.2853 16.4704 0.8836 0.8717 0.8773
1.9804 2.0 9242 1.9440 0.3147 0.1581 0.2864 0.2866 16.2207 0.8831 0.8725 0.8775
1.8971 3.0 13863 1.9157 0.3209 0.1638 0.2925 0.2926 15.4676 0.8857 0.8733 0.8792
1.8449 4.0 18484 1.9021 0.3236 0.1651 0.2953 0.2953 15.7946 0.8858 0.8739 0.8795

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0