|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mediasum |
|
metrics: |
|
- rouge |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Bart_mediasum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: mediasum |
|
type: mediasum |
|
config: roberta_prepended |
|
split: validation |
|
args: roberta_prepended |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.3236 |
|
- name: Precision |
|
type: precision |
|
value: 0.8858 |
|
- name: Recall |
|
type: recall |
|
value: 0.8739 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8795 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Bart_mediasum |
|
|
|
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the mediasum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9021 |
|
- Rouge1: 0.3236 |
|
- Rouge2: 0.1651 |
|
- Rougel: 0.2953 |
|
- Rougelsum: 0.2953 |
|
- Gen Len: 15.7946 |
|
- Precision: 0.8858 |
|
- Recall: 0.8739 |
|
- F1: 0.8795 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 96 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| |
|
| 2.1171 | 1.0 | 4621 | 2.0135 | 0.3138 | 0.1556 | 0.2853 | 0.2853 | 16.4704 | 0.8836 | 0.8717 | 0.8773 | |
|
| 1.9804 | 2.0 | 9242 | 1.9440 | 0.3147 | 0.1581 | 0.2864 | 0.2866 | 16.2207 | 0.8831 | 0.8725 | 0.8775 | |
|
| 1.8971 | 3.0 | 13863 | 1.9157 | 0.3209 | 0.1638 | 0.2925 | 0.2926 | 15.4676 | 0.8857 | 0.8733 | 0.8792 | |
|
| 1.8449 | 4.0 | 18484 | 1.9021 | 0.3236 | 0.1651 | 0.2953 | 0.2953 | 15.7946 | 0.8858 | 0.8739 | 0.8795 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.15.0 |
|
|