GuCuChiara's picture
Training complete
897ed4d
metadata
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model
    results: []

NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2050
  • Precision: 0.6079
  • Recall: 0.5407
  • F1: 0.5723
  • Accuracy: 0.9528

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.2223 0.3125 0.1619 0.2133 0.9212
No log 2.0 142 0.1599 0.5228 0.3539 0.4221 0.9446
No log 3.0 213 0.1472 0.5298 0.4385 0.4798 0.9470
No log 4.0 284 0.1441 0.5885 0.4729 0.5244 0.9514
No log 5.0 355 0.1675 0.5654 0.5146 0.5388 0.9491
No log 6.0 426 0.1592 0.5860 0.5082 0.5443 0.9521
No log 7.0 497 0.1634 0.5621 0.5587 0.5604 0.9509
0.1349 8.0 568 0.1897 0.5803 0.5182 0.5475 0.9515
0.1349 9.0 639 0.1880 0.5699 0.5539 0.5618 0.9506
0.1349 10.0 710 0.1939 0.5923 0.5415 0.5657 0.9525
0.1349 11.0 781 0.1988 0.5863 0.5475 0.5662 0.9518
0.1349 12.0 852 0.2050 0.6079 0.5407 0.5723 0.9528

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1