|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2050 |
|
- Precision: 0.6079 |
|
- Recall: 0.5407 |
|
- F1: 0.5723 |
|
- Accuracy: 0.9528 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 71 | 0.2223 | 0.3125 | 0.1619 | 0.2133 | 0.9212 | |
|
| No log | 2.0 | 142 | 0.1599 | 0.5228 | 0.3539 | 0.4221 | 0.9446 | |
|
| No log | 3.0 | 213 | 0.1472 | 0.5298 | 0.4385 | 0.4798 | 0.9470 | |
|
| No log | 4.0 | 284 | 0.1441 | 0.5885 | 0.4729 | 0.5244 | 0.9514 | |
|
| No log | 5.0 | 355 | 0.1675 | 0.5654 | 0.5146 | 0.5388 | 0.9491 | |
|
| No log | 6.0 | 426 | 0.1592 | 0.5860 | 0.5082 | 0.5443 | 0.9521 | |
|
| No log | 7.0 | 497 | 0.1634 | 0.5621 | 0.5587 | 0.5604 | 0.9509 | |
|
| 0.1349 | 8.0 | 568 | 0.1897 | 0.5803 | 0.5182 | 0.5475 | 0.9515 | |
|
| 0.1349 | 9.0 | 639 | 0.1880 | 0.5699 | 0.5539 | 0.5618 | 0.9506 | |
|
| 0.1349 | 10.0 | 710 | 0.1939 | 0.5923 | 0.5415 | 0.5657 | 0.9525 | |
|
| 0.1349 | 11.0 | 781 | 0.1988 | 0.5863 | 0.5475 | 0.5662 | 0.9518 | |
|
| 0.1349 | 12.0 | 852 | 0.2050 | 0.6079 | 0.5407 | 0.5723 | 0.9528 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|