|
--- |
|
license: apache-2.0 |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Llama2-jp-123M |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Llama2-jp-123M |
|
|
|
This model was built by referring to the config in [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0), 123M The model is a pre-trained Llama2 of Parameters with only 1 epoch on a Japanese dataset. |
|
The dataset used is [range3/wiki40b-ja](https://huggingface.co/datasets/range3/wiki40b-ja). |
|
- Loss: 2.6296 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 156 |
|
- eval_batch_size: 156 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 4.4744 | 0.04 | 1000 | 3.5915 | |
|
| 3.4036 | 0.08 | 2000 | 3.2836 | |
|
| 3.2088 | 0.12 | 3000 | 3.1575 | |
|
| 3.1151 | 0.16 | 4000 | 3.0811 | |
|
| 3.0471 | 0.2 | 5000 | 3.0247 | |
|
| 3.0006 | 0.24 | 6000 | 2.9798 | |
|
| 2.9581 | 0.28 | 7000 | 2.9409 | |
|
| 2.9187 | 0.32 | 8000 | 2.9103 | |
|
| 2.8899 | 0.36 | 9000 | 2.8805 | |
|
| 2.8603 | 0.4 | 10000 | 2.8523 | |
|
| 2.8329 | 0.44 | 11000 | 2.8259 | |
|
| 2.8068 | 0.48 | 12000 | 2.8011 | |
|
| 2.7825 | 0.52 | 13000 | 2.7782 | |
|
| 2.7601 | 0.56 | 14000 | 2.7567 | |
|
| 2.7384 | 0.6 | 15000 | 2.7362 | |
|
| 2.7194 | 0.64 | 16000 | 2.7164 | |
|
| 2.6986 | 0.68 | 17000 | 2.6973 | |
|
| 2.683 | 0.72 | 18000 | 2.6810 | |
|
| 2.667 | 0.76 | 19000 | 2.6664 | |
|
| 2.6511 | 0.8 | 20000 | 2.6540 | |
|
| 2.6421 | 0.84 | 21000 | 2.6441 | |
|
| 2.6312 | 0.88 | 22000 | 2.6369 | |
|
| 2.6286 | 0.92 | 23000 | 2.6322 | |
|
| 2.6234 | 0.96 | 24000 | 2.6301 | |
|
| 2.6216 | 1.0 | 25000 | 2.6296 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|