Ilya-Nazimov's picture
End of training
3f54106 verified
|
raw
history blame
4.35 kB
metadata
license: mit
base_model: cointegrated/rubert-tiny2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: rubert-tiny2-odonata-extended-305-1-ner
    results: []

rubert-tiny2-odonata-extended-305-1-ner

This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0101
  • Precision: 0.6420
  • Recall: 0.5821
  • F1: 0.6106
  • Accuracy: 0.9967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 32 0.1033 0.0 0.0 0.0 0.9952
No log 2.0 64 0.0391 0.0 0.0 0.0 0.9952
No log 3.0 96 0.0351 0.0 0.0 0.0 0.9952
No log 4.0 128 0.0321 0.0 0.0 0.0 0.9952
No log 5.0 160 0.0260 0.0 0.0 0.0 0.9952
No log 6.0 192 0.0188 0.6809 0.1194 0.2032 0.9955
No log 7.0 224 0.0158 0.6480 0.4328 0.5190 0.9961
No log 8.0 256 0.0143 0.6567 0.4925 0.5629 0.9964
No log 9.0 288 0.0133 0.6573 0.4366 0.5247 0.9963
No log 10.0 320 0.0127 0.5898 0.5634 0.5763 0.9964
No log 11.0 352 0.0122 0.6128 0.5373 0.5726 0.9965
No log 12.0 384 0.0119 0.6122 0.6007 0.6064 0.9965
No log 13.0 416 0.0114 0.6295 0.5261 0.5732 0.9965
No log 14.0 448 0.0112 0.6349 0.5709 0.6012 0.9967
No log 15.0 480 0.0111 0.6174 0.6082 0.6128 0.9966
0.0665 16.0 512 0.0108 0.6491 0.5522 0.5968 0.9967
0.0665 17.0 544 0.0108 0.6232 0.6418 0.6324 0.9967
0.0665 18.0 576 0.0106 0.6571 0.5149 0.5774 0.9967
0.0665 19.0 608 0.0105 0.6271 0.5522 0.5873 0.9965
0.0665 20.0 640 0.0105 0.6332 0.6119 0.6224 0.9967
0.0665 21.0 672 0.0104 0.6390 0.5746 0.6051 0.9966
0.0665 22.0 704 0.0104 0.6316 0.5821 0.6058 0.9966
0.0665 23.0 736 0.0103 0.6444 0.5410 0.5882 0.9966
0.0665 24.0 768 0.0103 0.6287 0.5560 0.5901 0.9966
0.0665 25.0 800 0.0102 0.6322 0.5709 0.6000 0.9966
0.0665 26.0 832 0.0102 0.6360 0.5672 0.5996 0.9966
0.0665 27.0 864 0.0102 0.6352 0.5784 0.6055 0.9966
0.0665 28.0 896 0.0102 0.6453 0.5634 0.6016 0.9967
0.0665 29.0 928 0.0101 0.6402 0.5709 0.6036 0.9967
0.0665 30.0 960 0.0101 0.6420 0.5821 0.6106 0.9967

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cpu
  • Datasets 2.19.2
  • Tokenizers 0.19.1