metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: modernbert-ner-conll2003
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8349195930423368
- name: Recall
type: recall
value: 0.856277347694379
- name: F1
type: f1
value: 0.8454636091724825
- name: Accuracy
type: accuracy
value: 0.9751567306569059
language:
- en
pipeline_tag: token-classification
modernbert-ner-conll2003
This model is a fine-tuned version of answerdotai/ModernBERT-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0992
- Precision: 0.8349
- Recall: 0.8563
- F1: 0.8455
- Accuracy: 0.9752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2306 | 1.0 | 1756 | 0.2243 | 0.6074 | 0.6483 | 0.6272 | 0.9406 |
0.1415 | 2.0 | 3512 | 0.1583 | 0.7258 | 0.7536 | 0.7394 | 0.9583 |
0.1143 | 3.0 | 5268 | 0.1335 | 0.7731 | 0.7989 | 0.7858 | 0.9657 |
0.0913 | 4.0 | 7024 | 0.1145 | 0.7958 | 0.8256 | 0.8104 | 0.9699 |
0.0848 | 5.0 | 8780 | 0.1079 | 0.8120 | 0.8408 | 0.8261 | 0.9720 |
0.0728 | 6.0 | 10536 | 0.1036 | 0.8214 | 0.8452 | 0.8331 | 0.9730 |
0.0623 | 7.0 | 12292 | 0.1032 | 0.8258 | 0.8487 | 0.8371 | 0.9737 |
0.0599 | 8.0 | 14048 | 0.0990 | 0.8289 | 0.8527 | 0.8406 | 0.9745 |
0.0558 | 9.0 | 15804 | 0.0998 | 0.8331 | 0.8541 | 0.8434 | 0.9750 |
0.0559 | 10.0 | 17560 | 0.0992 | 0.8349 | 0.8563 | 0.8455 | 0.9752 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0