pipeline_tag: sentence-similarity
lang:
- sv
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: Mannen åt mat.
sentences:
- Han förtärde en närande och nyttig måltid.
- Det var ett sunkigt hak med ganska gott käk.
- Han inmundigade middagen tillsammans med ett glas rödvin.
- Potatischips är jättegoda.
- Tryck på knappen för att få tala med kundsupporten.
example_title: Mat
- source_sentence: Kan jag deklarera digitalt från utlandet?
sentences:
- >-
Du som befinner dig i utlandet kan deklarera digitalt på flera olika
sätt.
- >-
Du som har kvarskatt att betala ska göra en inbetalning till ditt
skattekonto.
- >-
Efter att du har deklarerat går vi igenom uppgifterna i din deklaration
och räknar ut din skatt.
- >-
I din deklaration som du får från oss har vi räknat ut vad du ska betala
eller få tillbaka.
- Tryck på knappen för att få tala med kundsupporten.
example_title: Skatteverket FAQ
- source_sentence: Hon kunde göra bakåtvolter.
sentences:
- Hon var atletisk.
- Hon var bra på gymnastik.
- Hon var inte atletisk.
- Hon var oförmögen att flippa baklänges.
example_title: Gymnastik
KBLab/sentence-bert-swedish-cased
This is a sentence-transformers model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation and the documentation accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder (paraphrase-mpnet-base-v2) as a teacher model, and the pretrained Swedish KB-BERT as the student model.
A more detailed description of the model can be found in an article we published on the KBLab blog.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]
model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
The model was primarily evaluated on SweParaphrase v1.0. This test set is part of SuperLim -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. The model achieved a Pearson correlation coefficient of 0.918 and a Spearman's rank correlation coefficient of 0.911.
The following code snippet can be used to reproduce the above results:
from sentence_transformers import SentenceTransformer
import pandas as pd
df = pd.read_csv(
"sweparaphrase-dev-165.csv",
sep="\t",
header=None,
names=[
"original_id",
"source",
"type",
"sentence_swe1",
"sentence_swe2",
"score",
"sentence1",
"sentence2",
],
)
model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")
sentences1 = df["sentence_swe1"].tolist()
sentences2 = df["sentence_swe2"].tolist()
# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
# Compute cosine similarity after normalizing
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)
cosine_scores = embeddings1 @ embeddings2.t()
sentence_pair_scores = cosine_scores.diag()
df["model_score"] = sentence_pair_scores.cpu().tolist()
print(df[["score", "model_score"]].corr(method="spearman"))
print(df[["score", "model_score"]].corr(method="pearson"))
Examples how to evaluate the model on other test sets of the SuperLim suites can be found on the following links: evaluate_faq.py (Swedish FAQ), evaluate_swesat.py (SweSAT synonyms), evaluate_supersim.py (SuperSim).
Training
An article with more details on data and the model can be found on the KBLab blog.
Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the Open Parallel Corpus (OPUS) and downloaded via the python package opustools. Datasets used were: JW300, Europarl, EUbookshop, EMEA, TED2020, Tatoeba and OpenSubtitles.
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 180513 with parameters:
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MSELoss.MSELoss
Parameters of the fit()-Method:
{
"epochs": 2,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 8e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 5000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
This model was trained by KBLab, a data lab at the National Library of Sweden.
You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .
@misc{rekathati2021introducing,
author = {Rekathati, Faton},
title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},
url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},
year = {2021}
}
Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (www.hpc-rivr.si) and EuroHPC JU (eurohpc-ju.europa.eu/) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (www.izum.si).