|
--- |
|
license: mit |
|
datasets: |
|
- squad |
|
- eli5 |
|
- sentence-transformers/embedding-training-data |
|
- KennethTM/squad_pairs_danish |
|
- KennethTM/eli5_question_answer_danish |
|
language: |
|
- da |
|
--- |
|
|
|
*New version available, trained on more data and otherwise identical [KennethTM/MiniLM-L6-danish-reranker-v2](https://huggingface.co/KennethTM/MiniLM-L6-danish-reranker-v2)* |
|
|
|
# MiniLM-L6-danish-reranker |
|
|
|
This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It takes two sentences as input and outputs a relevance score. Therefore, the model can be used for information retrieval, e.g. given a query and candidate matches, rank the candidates by their relevance. |
|
|
|
The maximum sequence length is 512 tokens (for both passages). |
|
|
|
The model was not pre-trained from scratch but adapted from the English version of [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) with a [Danish tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish). |
|
|
|
Trained on ELI5 and SQUAD data machine translated from English to Danish. |
|
|
|
## Usage with Transformers |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained('KennethTM/MiniLM-L6-danish-reranker') |
|
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-reranker') |
|
features = tokenizer(['Kører der cykler på vejen?', 'Kører der cykler på vejen?'], ['En panda løber på vejen.', 'En mand kører hurtigt forbi på cykel.'], padding=True, truncation=True, return_tensors="pt") |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
scores = model(**features).logits |
|
print(scores) |
|
``` |
|
|
|
## Usage with SentenceTransformers |
|
|
|
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: |
|
```python |
|
from sentence_transformers import CrossEncoder |
|
model = CrossEncoder('KennethTM/MiniLM-L6-danish-reranker', max_length=512) |
|
scores = model.predict([('Kører der cykler på vejen?', 'En panda løber på vejen.'), ('Kører der cykler på vejen?', 'En mand kører hurtigt forbi på cykel.')]) |
|
``` |