Lguyogiro's picture
Upload tokenizer
1556da5 verified
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
base_model: facebook/mms-1b-all
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: wav2vec2-large-mms-1b-nhi-adapterft-orig-ortho_fold1
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 0.4133971291866029
            name: Wer

wav2vec2-large-mms-1b-nhi-adapterft-orig-ortho_fold1

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6127
  • Wer: 0.4134
  • Cer: 0.1235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 20
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0469 1.6529 200 0.7880 0.6456 0.2068
0.8396 3.3058 400 0.6866 0.6118 0.1870
0.7648 4.9587 600 0.6500 0.5656 0.1752
0.71 6.6116 800 0.6277 0.5477 0.1686
0.6709 8.2645 1000 0.6158 0.5349 0.1585
0.6492 9.9174 1200 0.5821 0.5033 0.1501
0.6284 11.5702 1400 0.5741 0.5145 0.1573
0.6054 13.2231 1600 0.5814 0.4912 0.1494
0.5808 14.8760 1800 0.5456 0.4896 0.1444
0.5585 16.5289 2000 0.5647 0.4884 0.1465
0.5546 18.1818 2200 0.5639 0.4890 0.1475
0.5288 19.8347 2400 0.5573 0.4903 0.1475
0.5307 21.4876 2600 0.5480 0.4657 0.1397
0.5172 23.1405 2800 0.5427 0.4622 0.1386
0.5041 24.7934 3000 0.5377 0.4549 0.1344
0.4748 26.4463 3200 0.5483 0.4635 0.1370
0.4754 28.0992 3400 0.5447 0.4699 0.1429
0.4602 29.7521 3600 0.5495 0.4523 0.1353
0.4502 31.4050 3800 0.5457 0.4329 0.1286
0.4413 33.0579 4000 0.5515 0.4501 0.1325
0.4391 34.7107 4200 0.5263 0.4545 0.1320
0.4097 36.3636 4400 0.5485 0.4574 0.1365
0.4208 38.0165 4600 0.5394 0.4542 0.1336
0.4086 39.6694 4800 0.5392 0.4357 0.1294
0.3956 41.3223 5000 0.5579 0.4332 0.1304
0.4036 42.9752 5200 0.5475 0.4376 0.1307
0.3984 44.6281 5400 0.5492 0.4297 0.1295
0.3769 46.2810 5600 0.5503 0.4348 0.1289
0.3699 47.9339 5800 0.5330 0.4357 0.1284
0.3611 49.5868 6000 0.5682 0.4380 0.1308
0.3619 51.2397 6200 0.5661 0.4316 0.1276
0.3387 52.8926 6400 0.5512 0.4287 0.1282
0.3392 54.5455 6600 0.5834 0.4351 0.1291
0.3365 56.1983 6800 0.5710 0.4335 0.1276
0.3288 57.8512 7000 0.5631 0.4262 0.1287
0.3244 59.5041 7200 0.5605 0.4281 0.1272
0.3187 61.1570 7400 0.5695 0.4332 0.1275
0.3258 62.8099 7600 0.5684 0.4265 0.1268
0.3035 64.4628 7800 0.5924 0.4185 0.1254
0.3051 66.1157 8000 0.5732 0.4319 0.1279
0.2968 67.7686 8200 0.5773 0.4204 0.1249
0.2982 69.4215 8400 0.5819 0.4140 0.1243
0.297 71.0744 8600 0.5941 0.4159 0.1240
0.2922 72.7273 8800 0.5836 0.4201 0.1229
0.2798 74.3802 9000 0.5951 0.4201 0.1243
0.2692 76.0331 9200 0.5820 0.4220 0.1255
0.2704 77.6860 9400 0.5954 0.4230 0.1251
0.271 79.3388 9600 0.6022 0.4172 0.1254
0.2633 80.9917 9800 0.5975 0.4182 0.1248
0.2554 82.6446 10000 0.6114 0.4124 0.1242
0.2575 84.2975 10200 0.6084 0.4153 0.1235
0.2554 85.9504 10400 0.6007 0.4156 0.1243
0.2595 87.6033 10600 0.6010 0.4166 0.1240
0.2544 89.2562 10800 0.6080 0.4217 0.1251
0.2555 90.9091 11000 0.6076 0.4156 0.1246
0.247 92.5620 11200 0.6151 0.4150 0.1239
0.2465 94.2149 11400 0.6113 0.4121 0.1240
0.2376 95.8678 11600 0.6136 0.4153 0.1237
0.2464 97.5207 11800 0.6121 0.4137 0.1235
0.2433 99.1736 12000 0.6127 0.4134 0.1235

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.4.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1