metadata
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0309O8
results: []
V0309O8
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.284 | 0.09 | 10 | 1.5098 |
0.8037 | 0.17 | 20 | 0.1367 |
0.1548 | 0.26 | 30 | 0.1059 |
0.1284 | 0.34 | 40 | 0.0860 |
0.118 | 0.43 | 50 | 0.0858 |
0.1038 | 0.51 | 60 | 0.0782 |
0.0913 | 0.6 | 70 | 0.0745 |
0.0917 | 0.68 | 80 | 0.0725 |
0.0829 | 0.77 | 90 | 0.0750 |
0.0821 | 0.85 | 100 | 0.0754 |
0.0865 | 0.94 | 110 | 0.0711 |
0.0875 | 1.02 | 120 | 0.0761 |
0.084 | 1.11 | 130 | 0.0742 |
0.0785 | 1.19 | 140 | 0.0672 |
0.0753 | 1.28 | 150 | 0.0681 |
0.0762 | 1.37 | 160 | 0.0755 |
0.0732 | 1.45 | 170 | 0.0685 |
0.0715 | 1.54 | 180 | 0.0713 |
0.0709 | 1.62 | 190 | 0.0697 |
0.0713 | 1.71 | 200 | 0.0680 |
0.0753 | 1.79 | 210 | 0.0682 |
0.068 | 1.88 | 220 | 0.0695 |
0.066 | 1.96 | 230 | 0.0652 |
0.0696 | 2.05 | 240 | 0.0668 |
0.062 | 2.13 | 250 | 0.0691 |
0.0618 | 2.22 | 260 | 0.0726 |
0.0599 | 2.3 | 270 | 0.0746 |
0.0661 | 2.39 | 280 | 0.0707 |
0.0635 | 2.47 | 290 | 0.0686 |
0.0627 | 2.56 | 300 | 0.0663 |
0.0661 | 2.65 | 310 | 0.0658 |
0.0568 | 2.73 | 320 | 0.0656 |
0.06 | 2.82 | 330 | 0.0660 |
0.0591 | 2.9 | 340 | 0.0664 |
0.062 | 2.99 | 350 | 0.0662 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1