|
--- |
|
license: mit |
|
train: false |
|
inference: true |
|
pipeline_tag: text-generation |
|
base_model: |
|
- mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 |
|
language: |
|
- en |
|
tags: |
|
- DeepSeek-R1-Distill-Qwen2.5-1.5B |
|
--- |
|
|
|
Original Model : https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 |
|
|
|
--- |
|
This is a version of the <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> model re-distilled for better performance. |
|
|
|
## Performance |
|
|
|
| Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1">DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1</a> | |
|
|:-------------------:|:--------:|:----------------:| |
|
| ARC (25-shot) | 40.96 | <b>41.55</b> | |
|
| HellaSwag (10-shot)| 44 | <b>45.88</b> | |
|
| MMLU (5-shot) | 39.27 | <b>41.82</b> | |
|
| TruthfulQA-MC2 | 45.17 | <b>46.63</b> | |
|
| Winogrande (5-shot)| 55.49 | <b>57.7</b> | |
|
| GSM8K (5-shot) | 69.9 | <b>74.3</b> | |
|
| Average | 49.13 | <b>51.31</b> | |
|
|
|
| Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1">DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1</a> | |
|
|:-------------------:|:--------:|:----------------:| |
|
| GPQA (0-shot) | 26.96 | <b>26.99</b> | |
|
| MMLU PRO (5-shot) | 16.74 | <b>19.86</b> | |
|
| MUSR (0-shot) | 35.93 | <b>36.6</b> | |
|
| BBH (3-shot) | 35.12 | <b>37.23</b> | |
|
| IfEval (0-shot) | 24.94 | <b>27.22</b> | |
|
|
|
## Usage |
|
```Python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
compute_dtype = torch.bfloat16 |
|
device = 'cuda' |
|
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
prompt = "What is 1.5+102.2?" |
|
chat = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
Output: |
|
``` |
|
<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think> |
|
First, I identify the numbers involved in the addition: 1.5 and 102.2. |
|
|
|
Next, I add the whole numbers: 1 + 102 equals 103. |
|
|
|
Then, I add the decimal parts: 0.5 + 0.2 equals 0.7. |
|
|
|
Finally, I combine the results: 103 + 0.7 equals 103.7. |
|
</think> |
|
|
|
To solve the addition \(1.5 + 102.2\), follow these steps: |
|
|
|
1. **Add the whole numbers:** |
|
\[ |
|
1 + 102 = 103 |
|
\] |
|
|
|
2. **Add the decimal parts:** |
|
\[ |
|
0.5 + 0.2 = 0.7 |
|
\] |
|
|
|
3. **Combine the results:** |
|
\[ |
|
103 + 0.7 = 103.7 |
|
\] |
|
|
|
So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|> |
|
``` |
|
--- |