metadata
license: apache-2.0
base_model: NicolasDenier/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
distilhubert-finetuned-gtzan
This model is a fine-tuned version of NicolasDenier/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6529
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6294 | 1.0 | 224 | 0.6803 | 0.85 |
0.4995 | 2.0 | 449 | 0.6409 | 0.87 |
0.3727 | 3.0 | 674 | 0.5873 | 0.87 |
0.1291 | 4.0 | 899 | 0.6303 | 0.86 |
0.0569 | 4.98 | 1120 | 0.6529 | 0.85 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3