|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: MIDICausalFinetuningFromFolder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MIDICausalFinetuningFromFolder |
|
|
|
This model was trained from scratch on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1183 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 2.6992 | 1.0 | 959 | 2.6253 | |
|
| 2.6438 | 2.0 | 1918 | 2.5918 | |
|
| 2.6098 | 3.0 | 2877 | 2.5617 | |
|
| 2.5847 | 4.0 | 3836 | 2.5325 | |
|
| 2.5604 | 5.0 | 4795 | 2.5040 | |
|
| 2.5433 | 6.0 | 5754 | 2.4798 | |
|
| 2.5203 | 7.0 | 6713 | 2.4534 | |
|
| 2.4956 | 8.0 | 7672 | 2.4253 | |
|
| 2.4787 | 9.0 | 8631 | 2.4038 | |
|
| 2.4582 | 10.0 | 9590 | 2.3793 | |
|
| 2.4419 | 11.0 | 10549 | 2.3574 | |
|
| 2.4246 | 12.0 | 11508 | 2.3354 | |
|
| 2.4114 | 13.0 | 12467 | 2.3144 | |
|
| 2.3916 | 14.0 | 13426 | 2.2958 | |
|
| 2.3882 | 15.0 | 14385 | 2.2784 | |
|
| 2.364 | 16.0 | 15344 | 2.2607 | |
|
| 2.3512 | 17.0 | 16303 | 2.2440 | |
|
| 2.3444 | 18.0 | 17262 | 2.2292 | |
|
| 2.3261 | 19.0 | 18221 | 2.2123 | |
|
| 2.3165 | 20.0 | 19180 | 2.1988 | |
|
| 2.3071 | 21.0 | 20139 | 2.1844 | |
|
| 2.2968 | 22.0 | 21098 | 2.1729 | |
|
| 2.2868 | 23.0 | 22057 | 2.1625 | |
|
| 2.2777 | 24.0 | 23016 | 2.1522 | |
|
| 2.2666 | 25.0 | 23975 | 2.1428 | |
|
| 2.2619 | 26.0 | 24934 | 2.1365 | |
|
| 2.2616 | 27.0 | 25893 | 2.1291 | |
|
| 2.2563 | 28.0 | 26852 | 2.1228 | |
|
| 2.2482 | 29.0 | 27811 | 2.1197 | |
|
| 2.2493 | 30.0 | 28770 | 2.1183 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|