aashish1904's picture
Upload README.md with huggingface_hub
e14c3d2 verified
|
raw
history blame
2.36 kB
metadata
base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
  - sft
datasets:
  - mlabonne/FineTome-100k

QuantFactory/FineLlama-3.1-8B-GGUF

This is quantized version of mlabonne/FineLlama-3.1-8B created using llama.cpp

Original Model Card

🍷 FineLlama-3.1-8B

This is a finetune of meta-llama/Meta-Llama-3.1-8B made for my article "Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth".

It was trained on 100k super high-quality samples from the mlabonne/FineTome-100k dataset.

Try the demo: https://huggingface.co/spaces/mlabonne/FineLlama-3.1-8B

πŸ”Ž Applications

This model was made for educational purposes. I recommend using Meta's instruct model for real applications.

⚑ Quantization

πŸ† Evaluation

TBD.

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/FineLlama-3.1-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.