RaiBP's picture
Update README.md
d049a7b verified
---
tags:
- generated_from_trainer
datasets:
- RaiBP/openwebtext2-first-30-chunks-ablation-translation
model-index:
- name: training_translation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# training_translation
This model was trained from scratch on the RaiBP/openwebtext2-first-30-chunks-ablation-translation dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The [`run_clm.py` script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py) from the transformers library was used. Training was distributed on two NVIDIA Quadro RTX 6000 GPUs:
```bash
TORCH_CPP_LOG_LEVEL=INFO NCCL_DEBUG=INFO CUDA_VISIBLE_DEVICES=0,1 nohup python -m torch.distributed.launch \
--nproc_per_node=2 run_clm.py --output_dir="./training_translation" \
--model_type="gpt2" \
--config_name="./training" \
--tokenizer_name="./training" \
--dataset_name="RaiBP/openwebtext2-first-30-chunks-ablation-translation" \
--do_train \
--per_device_train_batch_size 8 \
--block_size="1024" \
--learning_rate="5e-3" --warmup_steps="1000" \
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
--overwrite_output_dir \
--num_train_epochs="1" \
--logging_steps="500" \
--save_steps="5000" --preprocessing_num_workers="16" \
--gradient_accumulation_steps="4" --report_to="tensorboard" \
--logging_dir="./log_translation" > command_translation_log.log 2>&1 &
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
### Training results
### Evaluation results
Perplexity on random 2000 examples of the target language's [Wikipedia dataset](https://huggingface.co/datasets/wikimedia/wikipedia), using the code provided in the [perplexity docs](https://huggingface.co/docs/transformers/perplexity), with 512 tokes of stride.
Baseline is the result from evaluating [OpenAI's GPT-2](https://huggingface.co/gpt2) on the same examples.
| Target language | PPL | Baseline PPL |
|-----------------|-------------------|-------------------|
| en |39.97170639038086 |26.562532424926758 |
| de |25.49677848815918 |56.907039642333984 |
| es |21.964618682861328 |55.592445373535156 |
| fr | 25.343358993530273 |49.69472885131836 |
|it |25.46650505065918 |75.95120239257812 |
|pt | 19.93419075012207 ||
|nl | 32.07345199584961 ||
The following script was used for evaluation
```python
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from tqdm import tqdm
import random
# Set the seed for reproducibility
random.seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
model_name = "RaiBP/gpt2-openwebtext2-first-30-chunks-ablation-translation"
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
target_language_dataset = "20231101.de" # change here for other languages
dataset = load_dataset("wikimedia/wikipedia", target_language_dataset, split="train")
num_examples = 2000
random_numbers = list(np.random.randint(0, len(dataset), num_examples))
examples = []
for i in tqdm(random_numbers):
examples.append(dataset[int(i)]["text"])
encodings = tokenizer("\n\n".join(examples), return_tensors="pt")
max_length = model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)
nlls = []
prev_end_loc = 0
for begin_loc in tqdm(range(0, seq_len, stride)):
end_loc = min(begin_loc + max_length, seq_len)
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
# loss is calculated using CrossEntropyLoss which averages over valid labels
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
# to the left by 1.
neg_log_likelihood = outputs.loss
nlls.append(neg_log_likelihood)
prev_end_loc = end_loc
if end_loc == seq_len:
break
ppl = torch.exp(torch.stack(nlls).mean())
print("Perplexity: ", ppl.item())
```
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 1.13.0
- Datasets 2.16.0
- Tokenizers 0.15.0