Rodrigo1771 commited on
Commit
6bf5704
·
verified ·
1 Parent(s): 99af87c

End of training

Browse files
README.md CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
  tags:
 
6
  - generated_from_trainer
7
  datasets:
8
- - cantemist-85-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,8 +19,8 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: cantemist-85-ner
22
- type: cantemist-85-ner
23
  config: CantemistNer
24
  split: validation
25
  args: CantemistNer
@@ -35,7 +36,7 @@ model-index:
35
  value: 0.8506998444790046
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9916486929514279
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,13 +44,13 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the cantemist-85-ner dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0503
49
  - Precision: 0.8399
50
  - Recall: 0.8618
51
  - F1: 0.8507
52
- - Accuracy: 0.9916
53
 
54
  ## Model description
55
 
 
3
  license: apache-2.0
4
  base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
  tags:
6
+ - token-classification
7
  - generated_from_trainer
8
  datasets:
9
+ - Rodrigo1771/cantemist-85-ner
10
  metrics:
11
  - precision
12
  - recall
 
19
  name: Token Classification
20
  type: token-classification
21
  dataset:
22
+ name: Rodrigo1771/cantemist-85-ner
23
+ type: Rodrigo1771/cantemist-85-ner
24
  config: CantemistNer
25
  split: validation
26
  args: CantemistNer
 
36
  value: 0.8506998444790046
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.9916544445403043
40
  ---
41
 
42
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  # output
46
 
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/cantemist-85-ner dataset.
48
  It achieves the following results on the evaluation set:
49
+ - Loss: 0.0496
50
  - Precision: 0.8399
51
  - Recall: 0.8618
52
  - F1: 0.8507
53
+ - Accuracy: 0.9917
54
 
55
  ## Model description
56
 
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9916544445403043,
4
+ "eval_f1": 0.8506998444790046,
5
+ "eval_loss": 0.04956069961190224,
6
+ "eval_precision": 0.8399232245681382,
7
+ "eval_recall": 0.8617565970854667,
8
+ "eval_runtime": 15.5432,
9
+ "eval_samples": 7354,
10
+ "eval_samples_per_second": 473.133,
11
+ "eval_steps_per_second": 59.19,
12
+ "predict_accuracy": 0.9919921133225054,
13
+ "predict_f1": 0.8561699809316262,
14
+ "predict_loss": 0.04697508364915848,
15
+ "predict_precision": 0.8359042553191489,
16
+ "predict_recall": 0.8774427694025684,
17
+ "predict_runtime": 23.0034,
18
+ "predict_samples_per_second": 471.149,
19
+ "predict_steps_per_second": 58.904,
20
+ "total_flos": 1.5369860684670966e+16,
21
+ "train_loss": 0.009731636565258824,
22
+ "train_runtime": 1413.3317,
23
+ "train_samples": 32675,
24
+ "train_samples_per_second": 231.191,
25
+ "train_steps_per_second": 3.616
26
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9916544445403043,
4
+ "eval_f1": 0.8506998444790046,
5
+ "eval_loss": 0.04956069961190224,
6
+ "eval_precision": 0.8399232245681382,
7
+ "eval_recall": 0.8617565970854667,
8
+ "eval_runtime": 15.5432,
9
+ "eval_samples": 7354,
10
+ "eval_samples_per_second": 473.133,
11
+ "eval_steps_per_second": 59.19
12
+ }
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9919921133225054,
3
+ "predict_f1": 0.8561699809316262,
4
+ "predict_loss": 0.04697508364915848,
5
+ "predict_precision": 0.8359042553191489,
6
+ "predict_recall": 0.8774427694025684,
7
+ "predict_runtime": 23.0034,
8
+ "predict_samples_per_second": 471.149,
9
+ "predict_steps_per_second": 58.904
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
tb/events.out.tfevents.1725573899.df0b2d2cc7fe.2457.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6423da8ec0617924aeaa8bb9f423f80167211d3925beb4a31c9c0f6412f1122c
3
+ size 560
train.log CHANGED
@@ -1562,3 +1562,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1562
  {'eval_loss': 0.05025585740804672, 'eval_precision': 0.8399232245681382, 'eval_recall': 0.8617565970854667, 'eval_f1': 0.8506998444790046, 'eval_accuracy': 0.9916486929514279, 'eval_runtime': 16.4037, 'eval_samples_per_second': 448.314, 'eval_steps_per_second': 56.085, 'epoch': 10.0}
1563
  {'train_runtime': 1413.3317, 'train_samples_per_second': 231.191, 'train_steps_per_second': 3.616, 'train_loss': 0.009731636565258824, 'epoch': 10.0}
1564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565
  0%| | 0/920 [00:00<?, ?it/s]
1566
  1%| | 9/920 [00:00<00:10, 84.54it/s]
1567
  2%|▏ | 18/920 [00:00<00:12, 73.05it/s]
1568
  3%|▎ | 26/920 [00:00<00:11, 74.96it/s]
1569
  4%|▍ | 35/920 [00:00<00:11, 77.46it/s]
1570
  5%|▍ | 43/920 [00:00<00:11, 77.65it/s]
1571
  6%|▌ | 52/920 [00:00<00:10, 79.04it/s]
1572
  7%|▋ | 60/920 [00:00<00:11, 75.68it/s]
1573
  7%|▋ | 68/920 [00:00<00:11, 76.64it/s]
1574
  8%|▊ | 77/920 [00:00<00:10, 78.76it/s]
1575
  9%|▉ | 85/920 [00:01<00:10, 79.00it/s]
1576
  10%|█ | 94/920 [00:01<00:10, 79.41it/s]
1577
  11%|█ | 103/920 [00:01<00:10, 79.93it/s]
1578
  12%|█▏ | 111/920 [00:01<00:10, 79.52it/s]
1579
  13%|█▎ | 120/920 [00:01<00:09, 80.07it/s]
1580
  14%|█▍ | 129/920 [00:01<00:09, 81.24it/s]
1581
  15%|█▌ | 138/920 [00:01<00:09, 81.96it/s]
1582
  16%|█▌ | 147/920 [00:01<00:09, 82.29it/s]
1583
  17%|█▋ | 156/920 [00:01<00:09, 80.75it/s]
1584
  18%|█▊ | 165/920 [00:02<00:09, 81.61it/s]
1585
  19%|█▉ | 174/920 [00:02<00:09, 82.72it/s]
1586
  20%|█▉ | 183/920 [00:02<00:08, 82.84it/s]
1587
  21%|██ | 192/920 [00:02<00:08, 81.41it/s]
1588
  22%|██▏ | 201/920 [00:02<00:08, 80.35it/s]
1589
  23%|██▎ | 210/920 [00:02<00:09, 77.43it/s]
1590
  24%|██▍ | 219/920 [00:02<00:08, 79.21it/s]
1591
  25%|██▍ | 228/920 [00:02<00:08, 80.10it/s]
1592
  26%|██▌ | 237/920 [00:02<00:08, 81.55it/s]
1593
  27%|██▋ | 246/920 [00:03<00:08, 82.11it/s]
1594
  28%|██▊ | 255/920 [00:03<00:08, 81.17it/s]
1595
  29%|██▊ | 264/920 [00:03<00:08, 78.82it/s]
1596
  30%|██▉ | 272/920 [00:03<00:08, 78.57it/s]
1597
  30%|███ | 280/920 [00:03<00:08, 78.09it/s]
1598
  31%|███▏ | 288/920 [00:03<00:08, 78.11it/s]
1599
  32%|███▏ | 297/920 [00:03<00:07, 78.87it/s]
1600
  33%|███▎ | 306/920 [00:03<00:07, 79.62it/s]
1601
  34%|███▍ | 315/920 [00:03<00:07, 80.07it/s]
1602
  35%|███▌ | 324/920 [00:04<00:07, 79.49it/s]
1603
  36%|███▌ | 332/920 [00:04<00:07, 78.63it/s]
1604
  37%|███▋ | 340/920 [00:04<00:07, 77.32it/s]
1605
  38%|███▊ | 349/920 [00:04<00:07, 78.42it/s]
1606
  39%|███▉ | 357/920 [00:04<00:07, 78.09it/s]
1607
  40%|███▉ | 365/920 [00:04<00:07, 78.40it/s]
1608
  41%|████ | 374/920 [00:04<00:06, 79.90it/s]
1609
  42%|████▏ | 383/920 [00:04<00:06, 81.28it/s]
1610
  43%|████▎ | 392/920 [00:04<00:06, 78.97it/s]
1611
  43%|████▎ | 400/920 [00:05<00:06, 77.62it/s]
1612
  44%|████▍ | 408/920 [00:05<00:06, 76.16it/s]
1613
  45%|████▌ | 417/920 [00:05<00:06, 77.84it/s]
1614
  46%|████▋ | 426/920 [00:05<00:06, 78.34it/s]
1615
  47%|████▋ | 435/920 [00:05<00:06, 79.22it/s]
1616
  48%|████▊ | 444/920 [00:05<00:05, 80.13it/s]
1617
  49%|████▉ | 453/920 [00:05<00:05, 81.19it/s]
1618
  50%|█████ | 462/920 [00:05<00:05, 81.32it/s]
1619
  51%|█████ | 471/920 [00:05<00:05, 80.10it/s]
1620
  52%|█████▏ | 480/920 [00:06<00:05, 81.21it/s]
1621
  53%|█████▎ | 489/920 [00:06<00:05, 81.06it/s]
1622
  54%|█████▍ | 498/920 [00:06<00:05, 81.04it/s]
1623
  55%|█████▌ | 507/920 [00:06<00:05, 81.72it/s]
1624
  56%|█████▌ | 516/920 [00:06<00:04, 81.77it/s]
1625
  57%|█████▋ | 525/920 [00:06<00:04, 82.08it/s]
1626
  58%|█████▊ | 534/920 [00:06<00:04, 81.28it/s]
1627
  59%|█████▉ | 543/920 [00:06<00:04, 81.25it/s]
1628
  60%|██████ | 552/920 [00:06<00:04, 78.20it/s]
1629
  61%|██████ | 560/920 [00:07<00:04, 75.62it/s]
1630
  62%|██████▏ | 568/920 [00:07<00:04, 76.50it/s]
1631
  63%|██████▎ | 577/920 [00:07<00:04, 78.56it/s]
1632
  64%|██████▎ | 585/920 [00:07<00:04, 77.87it/s]
1633
  65%|██████▍ | 594/920 [00:07<00:04, 79.73it/s]
1634
  66%|██████▌ | 603/920 [00:07<00:03, 81.43it/s]
1635
  67%|██████▋ | 612/920 [00:07<00:03, 81.46it/s]
1636
  68%|██████▊ | 621/920 [00:07<00:03, 80.50it/s]
1637
  68%|██████▊ | 630/920 [00:07<00:03, 79.92it/s]
1638
  69%|██████▉ | 639/920 [00:08<00:03, 80.53it/s]
1639
  70%|███████ | 648/920 [00:08<00:03, 81.62it/s]
1640
  71%|███████▏ | 657/920 [00:08<00:03, 81.38it/s]
1641
  72%|███████▏ | 666/920 [00:08<00:03, 81.64it/s]
1642
  73%|███████▎ | 675/920 [00:08<00:02, 82.37it/s]
1643
  74%|███████▍ | 684/920 [00:08<00:02, 83.02it/s]
1644
  75%|███████▌ | 693/920 [00:08<00:02, 81.40it/s]
1645
  76%|███████▋ | 702/920 [00:08<00:02, 81.01it/s]
1646
  77%|███████▋ | 711/920 [00:08<00:02, 80.04it/s]
1647
  78%|███████▊ | 720/920 [00:09<00:02, 81.29it/s]
1648
  79%|███████▉ | 729/920 [00:09<00:02, 82.40it/s]
1649
  80%|████████ | 738/920 [00:09<00:02, 81.32it/s]
1650
  81%|████████ | 747/920 [00:09<00:02, 78.84it/s]
1651
  82%|████████▏ | 756/920 [00:09<00:02, 79.45it/s]
1652
  83%|████████▎ | 765/920 [00:09<00:01, 80.42it/s]
1653
  84%|████████▍ | 774/920 [00:09<00:01, 81.22it/s]
1654
  85%|████████▌ | 783/920 [00:09<00:01, 80.34it/s]
1655
  86%|████████▌ | 792/920 [00:09<00:01, 79.82it/s]
1656
  87%|████████▋ | 800/920 [00:10<00:01, 79.49it/s]
1657
  88%|████████▊ | 808/920 [00:10<00:01, 78.30it/s]
1658
  89%|████████▉ | 817/920 [00:10<00:01, 79.52it/s]
1659
  90%|████████▉ | 826/920 [00:10<00:01, 80.37it/s]
1660
  91%|█████████ | 835/920 [00:10<00:01, 81.87it/s]
1661
  92%|█████████▏| 844/920 [00:10<00:00, 80.79it/s]
1662
  93%|█████████▎| 853/920 [00:10<00:00, 76.52it/s]
1663
  94%|█████████▎| 861/920 [00:10<00:00, 75.56it/s]
1664
  95%|█████████▍| 870/920 [00:10<00:00, 77.00it/s]
1665
  96%|█████████▌| 879/920 [00:11<00:00, 78.67it/s]
1666
  97%|█████████▋| 888/920 [00:11<00:00, 79.25it/s]
1667
  97%|█████████▋| 896/920 [00:11<00:00, 76.28it/s]
1668
  98%|█████████▊| 905/920 [00:11<00:00, 77.41it/s]
1669
  99%|█████████▉| 914/920 [00:11<00:00, 79.26it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670
  0%| | 0/1355 [00:00<?, ?it/s]
1671
  1%| | 9/1355 [00:00<00:15, 89.65it/s]
1672
  1%|▏ | 18/1355 [00:00<00:16, 78.98it/s]
1673
  2%|▏ | 27/1355 [00:00<00:16, 80.91it/s]
1674
  3%|▎ | 36/1355 [00:00<00:16, 80.26it/s]
1675
  3%|▎ | 45/1355 [00:00<00:16, 79.74it/s]
1676
  4%|▍ | 53/1355 [00:00<00:17, 76.43it/s]
1677
  5%|▍ | 61/1355 [00:00<00:16, 76.79it/s]
1678
  5%|▌ | 69/1355 [00:00<00:16, 77.27it/s]
1679
  6%|▌ | 78/1355 [00:00<00:16, 78.60it/s]
1680
  6%|▋ | 87/1355 [00:01<00:15, 79.45it/s]
1681
  7%|▋ | 95/1355 [00:01<00:15, 79.17it/s]
1682
  8%|▊ | 103/1355 [00:01<00:15, 79.17it/s]
1683
  8%|▊ | 111/1355 [00:01<00:16, 77.62it/s]
1684
  9%|▉ | 119/1355 [00:01<00:16, 76.95it/s]
1685
  9%|▉ | 128/1355 [00:01<00:15, 77.99it/s]
1686
  10%|█ | 137/1355 [00:01<00:15, 78.88it/s]
1687
  11%|█ | 145/1355 [00:01<00:15, 76.54it/s]
1688
  11%|█▏ | 153/1355 [00:01<00:16, 74.41it/s]
1689
  12%|█▏ | 161/1355 [00:02<00:17, 70.18it/s]
1690
  12%|█▏ | 169/1355 [00:02<00:16, 71.76it/s]
1691
  13%|█▎ | 178/1355 [00:02<00:15, 74.18it/s]
1692
  14%|█▍ | 187/1355 [00:02<00:15, 76.84it/s]
1693
  14%|█▍ | 196/1355 [00:02<00:14, 78.67it/s]
1694
  15%|█▌ | 205/1355 [00:02<00:14, 79.95it/s]
1695
  16%|█▌ | 214/1355 [00:02<00:14, 81.03it/s]
1696
  16%|█▋ | 223/1355 [00:02<00:14, 79.30it/s]
1697
  17%|█▋ | 232/1355 [00:02<00:14, 79.76it/s]
1698
  18%|█▊ | 240/1355 [00:03<00:14, 78.82it/s]
1699
  18%|█▊ | 249/1355 [00:03<00:13, 79.55it/s]
1700
  19%|█▉ | 258/1355 [00:03<00:13, 80.77it/s]
1701
  20%|█▉ | 267/1355 [00:03<00:13, 82.26it/s]
1702
  20%|██ | 276/1355 [00:03<00:12, 83.16it/s]
1703
  21%|██ | 285/1355 [00:03<00:13, 81.80it/s]
1704
  22%|██▏ | 294/1355 [00:03<00:13, 81.16it/s]
1705
  22%|██▏ | 303/1355 [00:03<00:12, 82.02it/s]
1706
  23%|██▎ | 312/1355 [00:03<00:12, 83.08it/s]
1707
  24%|██▎ | 321/1355 [00:04<00:12, 83.67it/s]
1708
  24%|██▍ | 330/1355 [00:04<00:12, 84.72it/s]
1709
  25%|██▌ | 339/1355 [00:04<00:11, 85.11it/s]
1710
  26%|██▌ | 348/1355 [00:04<00:11, 85.47it/s]
1711
  26%|██▋ | 357/1355 [00:04<00:11, 85.91it/s]
1712
  27%|██▋ | 366/1355 [00:04<00:11, 86.27it/s]
1713
  28%|██▊ | 375/1355 [00:04<00:11, 85.79it/s]
1714
  28%|██▊ | 384/1355 [00:04<00:11, 85.61it/s]
1715
  29%|██▉ | 393/1355 [00:04<00:11, 85.43it/s]
1716
  30%|██▉ | 402/1355 [00:04<00:11, 85.11it/s]
1717
  30%|███ | 411/1355 [00:05<00:11, 85.66it/s]
1718
  31%|███ | 420/1355 [00:05<00:11, 84.67it/s]
1719
  32%|███▏ | 429/1355 [00:05<00:10, 85.02it/s]
1720
  32%|███▏ | 438/1355 [00:05<00:10, 84.20it/s]
1721
  33%|███▎ | 447/1355 [00:05<00:10, 84.53it/s]
1722
  34%|███▎ | 456/1355 [00:05<00:11, 81.47it/s]
1723
  34%|███▍ | 465/1355 [00:05<00:10, 81.24it/s]
1724
  35%|███▍ | 474/1355 [00:05<00:10, 81.95it/s]
1725
  36%|███▌ | 483/1355 [00:05<00:10, 82.64it/s]
1726
  36%|███▋ | 492/1355 [00:06<00:10, 83.13it/s]
1727
  37%|███▋ | 501/1355 [00:06<00:10, 82.28it/s]
1728
  38%|███▊ | 510/1355 [00:06<00:10, 79.36it/s]
1729
  38%|███▊ | 518/1355 [00:06<00:10, 78.05it/s]
1730
  39%|███▉ | 527/1355 [00:06<00:10, 79.16it/s]
1731
  40%|███▉ | 536/1355 [00:06<00:10, 79.94it/s]
1732
  40%|████ | 545/1355 [00:06<00:10, 78.66it/s]
1733
  41%|████ | 554/1355 [00:06<00:10, 80.00it/s]
1734
  42%|████▏ | 563/1355 [00:06<00:09, 81.81it/s]
1735
  42%|████▏ | 572/1355 [00:07<00:09, 82.19it/s]
1736
  43%|████▎ | 581/1355 [00:07<00:09, 80.37it/s]
1737
  44%|████▎ | 590/1355 [00:07<00:09, 81.18it/s]
1738
  44%|████▍ | 599/1355 [00:07<00:09, 80.25it/s]
1739
  45%|████▍ | 608/1355 [00:07<00:09, 77.59it/s]
1740
  46%|████▌ | 617/1355 [00:07<00:09, 79.00it/s]
1741
  46%|████▌ | 625/1355 [00:07<00:09, 78.08it/s]
1742
  47%|████▋ | 633/1355 [00:07<00:09, 78.24it/s]
1743
  47%|████▋ | 642/1355 [00:07<00:08, 79.32it/s]
1744
  48%|████▊ | 651/1355 [00:08<00:08, 80.44it/s]
1745
  49%|████▊ | 660/1355 [00:08<00:08, 82.22it/s]
1746
  49%|████▉ | 669/1355 [00:08<00:09, 76.21it/s]
1747
  50%|█████ | 678/1355 [00:08<00:08, 77.55it/s]
1748
  51%|█████ | 687/1355 [00:08<00:08, 78.58it/s]
1749
  51%|█████▏ | 696/1355 [00:08<00:08, 79.87it/s]
1750
  52%|█████▏ | 705/1355 [00:08<00:08, 78.11it/s]
1751
  53%|█████▎ | 714/1355 [00:08<00:07, 80.50it/s]
1752
  53%|█████▎ | 723/1355 [00:08<00:07, 80.12it/s]
1753
  54%|█████▍ | 732/1355 [00:09<00:07, 80.88it/s]
1754
  55%|█████▍ | 741/1355 [00:09<00:07, 78.39it/s]
1755
  55%|█████▌ | 750/1355 [00:09<00:07, 79.64it/s]
1756
  56%|█████▌ | 758/1355 [00:09<00:07, 78.30it/s]
1757
  57%|█████▋ | 766/1355 [00:09<00:07, 78.43it/s]
1758
  57%|█████▋ | 775/1355 [00:09<00:07, 81.16it/s]
1759
  58%|█████▊ | 784/1355 [00:09<00:07, 76.55it/s]
1760
  59%|█████▊ | 793/1355 [00:09<00:07, 78.18it/s]
1761
  59%|█████▉ | 801/1355 [00:09<00:07, 78.59it/s]
1762
  60%|█████▉ | 810/1355 [00:10<00:06, 81.02it/s]
1763
  60%|██████ | 819/1355 [00:10<00:06, 81.88it/s]
1764
  61%|██████ | 828/1355 [00:10<00:06, 81.33it/s]
1765
  62%|██████▏ | 837/1355 [00:10<00:06, 80.79it/s]
1766
  62%|██████▏ | 846/1355 [00:10<00:06, 80.11it/s]
1767
  63%|██████▎ | 855/1355 [00:10<00:06, 80.41it/s]
1768
  64%|██████▍ | 864/1355 [00:10<00:06, 81.38it/s]
1769
  64%|██████▍ | 873/1355 [00:10<00:05, 82.00it/s]
1770
  65%|██████▌ | 882/1355 [00:10<00:05, 82.54it/s]
1771
  66%|██████▌ | 891/1355 [00:11<00:05, 82.98it/s]
1772
  66%|██████▋ | 900/1355 [00:11<00:05, 82.84it/s]
1773
  67%|██████▋ | 909/1355 [00:11<00:05, 83.28it/s]
1774
  68%|██████▊ | 918/1355 [00:11<00:05, 83.30it/s]
1775
  68%|██████▊ | 927/1355 [00:11<00:05, 80.41it/s]
1776
  69%|██████▉ | 936/1355 [00:11<00:05, 79.47it/s]
1777
  70%|██████▉ | 945/1355 [00:11<00:05, 80.81it/s]
1778
  70%|███████ | 954/1355 [00:11<00:04, 81.93it/s]
1779
  71%|███████ | 963/1355 [00:11<00:04, 80.07it/s]
1780
  72%|███████▏ | 972/1355 [00:12<00:05, 76.41it/s]
1781
  72%|███████▏ | 980/1355 [00:12<00:04, 77.20it/s]
1782
  73%|███████▎ | 988/1355 [00:12<00:04, 77.77it/s]
1783
  74%|███████▎ | 996/1355 [00:12<00:04, 78.35it/s]
1784
  74%|███████▍ | 1005/1355 [00:12<00:04, 80.44it/s]
1785
  75%|███████▍ | 1014/1355 [00:12<00:04, 79.12it/s]
1786
  75%|███████▌ | 1022/1355 [00:12<00:04, 78.30it/s]
1787
  76%|███████▌ | 1030/1355 [00:12<00:04, 78.23it/s]
1788
  77%|███████▋ | 1039/1355 [00:12<00:03, 79.57it/s]
1789
  77%|███████▋ | 1048/1355 [00:13<00:03, 81.05it/s]
1790
  78%|███████▊ | 1057/1355 [00:13<00:03, 79.79it/s]
1791
  79%|███████▊ | 1066/1355 [00:13<00:03, 81.05it/s]
1792
  79%|███████▉ | 1075/1355 [00:13<00:03, 81.44it/s]
1793
  80%|████████ | 1084/1355 [00:13<00:03, 80.30it/s]
1794
  81%|████████ | 1093/1355 [00:13<00:03, 80.00it/s]
1795
  81%|████████▏ | 1102/1355 [00:13<00:03, 80.32it/s]
1796
  82%|████████▏ | 1111/1355 [00:13<00:03, 76.79it/s]
1797
  83%|████████▎ | 1119/1355 [00:13<00:03, 76.96it/s]
1798
  83%|████████▎ | 1127/1355 [00:14<00:02, 76.68it/s]
1799
  84%|████████▍ | 1136/1355 [00:14<00:02, 76.22it/s]
1800
  85%|████████▍ | 1145/1355 [00:14<00:02, 78.00it/s]
1801
  85%|████████▌ | 1153/1355 [00:14<00:02, 77.95it/s]
1802
  86%|████████▌ | 1161/1355 [00:14<00:02, 76.16it/s]
1803
  86%|████████▋ | 1169/1355 [00:14<00:02, 76.13it/s]
1804
  87%|████████▋ | 1177/1355 [00:14<00:02, 77.20it/s]
1805
  88%|████████▊ | 1186/1355 [00:14<00:02, 77.96it/s]
1806
  88%|████████▊ | 1195/1355 [00:14<00:02, 78.39it/s]
1807
  89%|████████▉ | 1203/1355 [00:15<00:01, 78.18it/s]
1808
  89%|████████▉ | 1212/1355 [00:15<00:01, 79.03it/s]
1809
  90%|█████████ | 1220/1355 [00:15<00:01, 76.62it/s]
1810
  91%|█████████ | 1229/1355 [00:15<00:01, 77.65it/s]
1811
  91%|█████████▏| 1237/1355 [00:15<00:01, 77.55it/s]
1812
  92%|█████████▏| 1245/1355 [00:15<00:01, 77.78it/s]
1813
  92%|█████████▏| 1253/1355 [00:15<00:01, 78.26it/s]
1814
  93%|█████████▎| 1262/1355 [00:15<00:01, 79.17it/s]
1815
  94%|█████████▎| 1270/1355 [00:15<00:01, 79.22it/s]
1816
  94%|█████████▍| 1279/1355 [00:16<00:00, 80.05it/s]
1817
  95%|█████████▌| 1288/1355 [00:16<00:00, 81.28it/s]
1818
  96%|█████████▌| 1297/1355 [00:16<00:00, 80.80it/s]
1819
  96%|█████████▋| 1306/1355 [00:16<00:00, 79.04it/s]
1820
  97%|█████████▋| 1314/1355 [00:16<00:00, 79.26it/s]
1821
  98%|█████████▊| 1322/1355 [00:16<00:00, 79.15it/s]
1822
  98%|█████████▊| 1330/1355 [00:16<00:00, 79.26it/s]
1823
  99%|█████████▊| 1338/1355 [00:16<00:00, 76.91it/s]
1824
  99%|█████████▉| 1346/1355 [00:16<00:00, 77.65it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
  {'eval_loss': 0.05025585740804672, 'eval_precision': 0.8399232245681382, 'eval_recall': 0.8617565970854667, 'eval_f1': 0.8506998444790046, 'eval_accuracy': 0.9916486929514279, 'eval_runtime': 16.4037, 'eval_samples_per_second': 448.314, 'eval_steps_per_second': 56.085, 'epoch': 10.0}
1563
  {'train_runtime': 1413.3317, 'train_samples_per_second': 231.191, 'train_steps_per_second': 3.616, 'train_loss': 0.009731636565258824, 'epoch': 10.0}
1564
 
1565
+ ***** train metrics *****
1566
+ epoch = 10.0
1567
+ total_flos = 14314298GF
1568
+ train_loss = 0.0097
1569
+ train_runtime = 0:23:33.33
1570
+ train_samples = 32675
1571
+ train_samples_per_second = 231.191
1572
+ train_steps_per_second = 3.616
1573
+ 09/05/2024 22:04:44 - INFO - __main__ - *** Evaluate ***
1574
+ [INFO|trainer.py:811] 2024-09-05 22:04:44,308 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, id, ner_tags. If tokens, id, ner_tags are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
1575
+ [INFO|trainer.py:3819] 2024-09-05 22:04:44,311 >>
1576
+ ***** Running Evaluation *****
1577
+ [INFO|trainer.py:3821] 2024-09-05 22:04:44,311 >> Num examples = 7354
1578
+ [INFO|trainer.py:3824] 2024-09-05 22:04:44,311 >> Batch size = 8
1579
+
1580
  0%| | 0/920 [00:00<?, ?it/s]
1581
  1%| | 9/920 [00:00<00:10, 84.54it/s]
1582
  2%|▏ | 18/920 [00:00<00:12, 73.05it/s]
1583
  3%|▎ | 26/920 [00:00<00:11, 74.96it/s]
1584
  4%|▍ | 35/920 [00:00<00:11, 77.46it/s]
1585
  5%|▍ | 43/920 [00:00<00:11, 77.65it/s]
1586
  6%|▌ | 52/920 [00:00<00:10, 79.04it/s]
1587
  7%|▋ | 60/920 [00:00<00:11, 75.68it/s]
1588
  7%|▋ | 68/920 [00:00<00:11, 76.64it/s]
1589
  8%|▊ | 77/920 [00:00<00:10, 78.76it/s]
1590
  9%|▉ | 85/920 [00:01<00:10, 79.00it/s]
1591
  10%|█ | 94/920 [00:01<00:10, 79.41it/s]
1592
  11%|█ | 103/920 [00:01<00:10, 79.93it/s]
1593
  12%|█▏ | 111/920 [00:01<00:10, 79.52it/s]
1594
  13%|█▎ | 120/920 [00:01<00:09, 80.07it/s]
1595
  14%|█▍ | 129/920 [00:01<00:09, 81.24it/s]
1596
  15%|█▌ | 138/920 [00:01<00:09, 81.96it/s]
1597
  16%|█▌ | 147/920 [00:01<00:09, 82.29it/s]
1598
  17%|█▋ | 156/920 [00:01<00:09, 80.75it/s]
1599
  18%|█▊ | 165/920 [00:02<00:09, 81.61it/s]
1600
  19%|█▉ | 174/920 [00:02<00:09, 82.72it/s]
1601
  20%|█▉ | 183/920 [00:02<00:08, 82.84it/s]
1602
  21%|██ | 192/920 [00:02<00:08, 81.41it/s]
1603
  22%|██▏ | 201/920 [00:02<00:08, 80.35it/s]
1604
  23%|██▎ | 210/920 [00:02<00:09, 77.43it/s]
1605
  24%|██▍ | 219/920 [00:02<00:08, 79.21it/s]
1606
  25%|██▍ | 228/920 [00:02<00:08, 80.10it/s]
1607
  26%|██▌ | 237/920 [00:02<00:08, 81.55it/s]
1608
  27%|██▋ | 246/920 [00:03<00:08, 82.11it/s]
1609
  28%|██▊ | 255/920 [00:03<00:08, 81.17it/s]
1610
  29%|██▊ | 264/920 [00:03<00:08, 78.82it/s]
1611
  30%|██▉ | 272/920 [00:03<00:08, 78.57it/s]
1612
  30%|███ | 280/920 [00:03<00:08, 78.09it/s]
1613
  31%|███▏ | 288/920 [00:03<00:08, 78.11it/s]
1614
  32%|███▏ | 297/920 [00:03<00:07, 78.87it/s]
1615
  33%|███▎ | 306/920 [00:03<00:07, 79.62it/s]
1616
  34%|███▍ | 315/920 [00:03<00:07, 80.07it/s]
1617
  35%|███▌ | 324/920 [00:04<00:07, 79.49it/s]
1618
  36%|███▌ | 332/920 [00:04<00:07, 78.63it/s]
1619
  37%|███▋ | 340/920 [00:04<00:07, 77.32it/s]
1620
  38%|███▊ | 349/920 [00:04<00:07, 78.42it/s]
1621
  39%|███▉ | 357/920 [00:04<00:07, 78.09it/s]
1622
  40%|███▉ | 365/920 [00:04<00:07, 78.40it/s]
1623
  41%|████ | 374/920 [00:04<00:06, 79.90it/s]
1624
  42%|████▏ | 383/920 [00:04<00:06, 81.28it/s]
1625
  43%|████▎ | 392/920 [00:04<00:06, 78.97it/s]
1626
  43%|████▎ | 400/920 [00:05<00:06, 77.62it/s]
1627
  44%|████▍ | 408/920 [00:05<00:06, 76.16it/s]
1628
  45%|████▌ | 417/920 [00:05<00:06, 77.84it/s]
1629
  46%|████▋ | 426/920 [00:05<00:06, 78.34it/s]
1630
  47%|████▋ | 435/920 [00:05<00:06, 79.22it/s]
1631
  48%|████▊ | 444/920 [00:05<00:05, 80.13it/s]
1632
  49%|████▉ | 453/920 [00:05<00:05, 81.19it/s]
1633
  50%|█████ | 462/920 [00:05<00:05, 81.32it/s]
1634
  51%|█████ | 471/920 [00:05<00:05, 80.10it/s]
1635
  52%|█████▏ | 480/920 [00:06<00:05, 81.21it/s]
1636
  53%|█████▎ | 489/920 [00:06<00:05, 81.06it/s]
1637
  54%|█████▍ | 498/920 [00:06<00:05, 81.04it/s]
1638
  55%|█████▌ | 507/920 [00:06<00:05, 81.72it/s]
1639
  56%|█████▌ | 516/920 [00:06<00:04, 81.77it/s]
1640
  57%|█████▋ | 525/920 [00:06<00:04, 82.08it/s]
1641
  58%|█████▊ | 534/920 [00:06<00:04, 81.28it/s]
1642
  59%|█████▉ | 543/920 [00:06<00:04, 81.25it/s]
1643
  60%|██████ | 552/920 [00:06<00:04, 78.20it/s]
1644
  61%|██████ | 560/920 [00:07<00:04, 75.62it/s]
1645
  62%|██████▏ | 568/920 [00:07<00:04, 76.50it/s]
1646
  63%|██████▎ | 577/920 [00:07<00:04, 78.56it/s]
1647
  64%|██████▎ | 585/920 [00:07<00:04, 77.87it/s]
1648
  65%|██████▍ | 594/920 [00:07<00:04, 79.73it/s]
1649
  66%|██████▌ | 603/920 [00:07<00:03, 81.43it/s]
1650
  67%|██████▋ | 612/920 [00:07<00:03, 81.46it/s]
1651
  68%|██████▊ | 621/920 [00:07<00:03, 80.50it/s]
1652
  68%|██████▊ | 630/920 [00:07<00:03, 79.92it/s]
1653
  69%|██████▉ | 639/920 [00:08<00:03, 80.53it/s]
1654
  70%|███████ | 648/920 [00:08<00:03, 81.62it/s]
1655
  71%|███████▏ | 657/920 [00:08<00:03, 81.38it/s]
1656
  72%|███████▏ | 666/920 [00:08<00:03, 81.64it/s]
1657
  73%|███████▎ | 675/920 [00:08<00:02, 82.37it/s]
1658
  74%|███████▍ | 684/920 [00:08<00:02, 83.02it/s]
1659
  75%|███████▌ | 693/920 [00:08<00:02, 81.40it/s]
1660
  76%|███████▋ | 702/920 [00:08<00:02, 81.01it/s]
1661
  77%|███████▋ | 711/920 [00:08<00:02, 80.04it/s]
1662
  78%|███████▊ | 720/920 [00:09<00:02, 81.29it/s]
1663
  79%|███████▉ | 729/920 [00:09<00:02, 82.40it/s]
1664
  80%|████████ | 738/920 [00:09<00:02, 81.32it/s]
1665
  81%|████████ | 747/920 [00:09<00:02, 78.84it/s]
1666
  82%|████████▏ | 756/920 [00:09<00:02, 79.45it/s]
1667
  83%|████████▎ | 765/920 [00:09<00:01, 80.42it/s]
1668
  84%|████████▍ | 774/920 [00:09<00:01, 81.22it/s]
1669
  85%|████████▌ | 783/920 [00:09<00:01, 80.34it/s]
1670
  86%|████████▌ | 792/920 [00:09<00:01, 79.82it/s]
1671
  87%|████████▋ | 800/920 [00:10<00:01, 79.49it/s]
1672
  88%|████████▊ | 808/920 [00:10<00:01, 78.30it/s]
1673
  89%|████████▉ | 817/920 [00:10<00:01, 79.52it/s]
1674
  90%|████████▉ | 826/920 [00:10<00:01, 80.37it/s]
1675
  91%|█████████ | 835/920 [00:10<00:01, 81.87it/s]
1676
  92%|█████████▏| 844/920 [00:10<00:00, 80.79it/s]
1677
  93%|█████████▎| 853/920 [00:10<00:00, 76.52it/s]
1678
  94%|█████████▎| 861/920 [00:10<00:00, 75.56it/s]
1679
  95%|█████████▍| 870/920 [00:10<00:00, 77.00it/s]
1680
  96%|█████████▌| 879/920 [00:11<00:00, 78.67it/s]
1681
  97%|█████████▋| 888/920 [00:11<00:00, 79.25it/s]
1682
  97%|█████████▋| 896/920 [00:11<00:00, 76.28it/s]
1683
  98%|█████████▊| 905/920 [00:11<00:00, 77.41it/s]
1684
  99%|█████████▉| 914/920 [00:11<00:00, 79.26it/s]
1685
+ ***** eval metrics *****
1686
+ epoch = 10.0
1687
+ eval_accuracy = 0.9917
1688
+ eval_f1 = 0.8507
1689
+ eval_loss = 0.0496
1690
+ eval_precision = 0.8399
1691
+ eval_recall = 0.8618
1692
+ eval_runtime = 0:00:15.54
1693
+ eval_samples = 7354
1694
+ eval_samples_per_second = 473.133
1695
+ eval_steps_per_second = 59.19
1696
+ 09/05/2024 22:04:59 - INFO - __main__ - *** Predict ***
1697
+ [INFO|trainer.py:811] 2024-09-05 22:04:59,857 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, id, ner_tags. If tokens, id, ner_tags are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
1698
+ [INFO|trainer.py:3819] 2024-09-05 22:04:59,859 >>
1699
+ ***** Running Prediction *****
1700
+ [INFO|trainer.py:3821] 2024-09-05 22:04:59,859 >> Num examples = 10838
1701
+ [INFO|trainer.py:3824] 2024-09-05 22:04:59,859 >> Batch size = 8
1702
+
1703
  0%| | 0/1355 [00:00<?, ?it/s]
1704
  1%| | 9/1355 [00:00<00:15, 89.65it/s]
1705
  1%|▏ | 18/1355 [00:00<00:16, 78.98it/s]
1706
  2%|▏ | 27/1355 [00:00<00:16, 80.91it/s]
1707
  3%|▎ | 36/1355 [00:00<00:16, 80.26it/s]
1708
  3%|▎ | 45/1355 [00:00<00:16, 79.74it/s]
1709
  4%|▍ | 53/1355 [00:00<00:17, 76.43it/s]
1710
  5%|▍ | 61/1355 [00:00<00:16, 76.79it/s]
1711
  5%|▌ | 69/1355 [00:00<00:16, 77.27it/s]
1712
  6%|▌ | 78/1355 [00:00<00:16, 78.60it/s]
1713
  6%|▋ | 87/1355 [00:01<00:15, 79.45it/s]
1714
  7%|▋ | 95/1355 [00:01<00:15, 79.17it/s]
1715
  8%|▊ | 103/1355 [00:01<00:15, 79.17it/s]
1716
  8%|▊ | 111/1355 [00:01<00:16, 77.62it/s]
1717
  9%|▉ | 119/1355 [00:01<00:16, 76.95it/s]
1718
  9%|▉ | 128/1355 [00:01<00:15, 77.99it/s]
1719
  10%|█ | 137/1355 [00:01<00:15, 78.88it/s]
1720
  11%|█ | 145/1355 [00:01<00:15, 76.54it/s]
1721
  11%|█▏ | 153/1355 [00:01<00:16, 74.41it/s]
1722
  12%|█▏ | 161/1355 [00:02<00:17, 70.18it/s]
1723
  12%|█▏ | 169/1355 [00:02<00:16, 71.76it/s]
1724
  13%|█▎ | 178/1355 [00:02<00:15, 74.18it/s]
1725
  14%|█▍ | 187/1355 [00:02<00:15, 76.84it/s]
1726
  14%|█▍ | 196/1355 [00:02<00:14, 78.67it/s]
1727
  15%|█▌ | 205/1355 [00:02<00:14, 79.95it/s]
1728
  16%|█▌ | 214/1355 [00:02<00:14, 81.03it/s]
1729
  16%|█▋ | 223/1355 [00:02<00:14, 79.30it/s]
1730
  17%|█▋ | 232/1355 [00:02<00:14, 79.76it/s]
1731
  18%|█▊ | 240/1355 [00:03<00:14, 78.82it/s]
1732
  18%|█▊ | 249/1355 [00:03<00:13, 79.55it/s]
1733
  19%|█▉ | 258/1355 [00:03<00:13, 80.77it/s]
1734
  20%|█▉ | 267/1355 [00:03<00:13, 82.26it/s]
1735
  20%|██ | 276/1355 [00:03<00:12, 83.16it/s]
1736
  21%|██ | 285/1355 [00:03<00:13, 81.80it/s]
1737
  22%|██▏ | 294/1355 [00:03<00:13, 81.16it/s]
1738
  22%|██▏ | 303/1355 [00:03<00:12, 82.02it/s]
1739
  23%|██▎ | 312/1355 [00:03<00:12, 83.08it/s]
1740
  24%|██▎ | 321/1355 [00:04<00:12, 83.67it/s]
1741
  24%|██▍ | 330/1355 [00:04<00:12, 84.72it/s]
1742
  25%|██▌ | 339/1355 [00:04<00:11, 85.11it/s]
1743
  26%|██▌ | 348/1355 [00:04<00:11, 85.47it/s]
1744
  26%|██▋ | 357/1355 [00:04<00:11, 85.91it/s]
1745
  27%|██▋ | 366/1355 [00:04<00:11, 86.27it/s]
1746
  28%|██▊ | 375/1355 [00:04<00:11, 85.79it/s]
1747
  28%|██▊ | 384/1355 [00:04<00:11, 85.61it/s]
1748
  29%|██▉ | 393/1355 [00:04<00:11, 85.43it/s]
1749
  30%|██▉ | 402/1355 [00:04<00:11, 85.11it/s]
1750
  30%|███ | 411/1355 [00:05<00:11, 85.66it/s]
1751
  31%|███ | 420/1355 [00:05<00:11, 84.67it/s]
1752
  32%|███▏ | 429/1355 [00:05<00:10, 85.02it/s]
1753
  32%|███▏ | 438/1355 [00:05<00:10, 84.20it/s]
1754
  33%|███▎ | 447/1355 [00:05<00:10, 84.53it/s]
1755
  34%|███▎ | 456/1355 [00:05<00:11, 81.47it/s]
1756
  34%|███▍ | 465/1355 [00:05<00:10, 81.24it/s]
1757
  35%|███▍ | 474/1355 [00:05<00:10, 81.95it/s]
1758
  36%|███▌ | 483/1355 [00:05<00:10, 82.64it/s]
1759
  36%|███▋ | 492/1355 [00:06<00:10, 83.13it/s]
1760
  37%|███▋ | 501/1355 [00:06<00:10, 82.28it/s]
1761
  38%|███▊ | 510/1355 [00:06<00:10, 79.36it/s]
1762
  38%|███▊ | 518/1355 [00:06<00:10, 78.05it/s]
1763
  39%|███▉ | 527/1355 [00:06<00:10, 79.16it/s]
1764
  40%|███▉ | 536/1355 [00:06<00:10, 79.94it/s]
1765
  40%|████ | 545/1355 [00:06<00:10, 78.66it/s]
1766
  41%|████ | 554/1355 [00:06<00:10, 80.00it/s]
1767
  42%|████▏ | 563/1355 [00:06<00:09, 81.81it/s]
1768
  42%|████▏ | 572/1355 [00:07<00:09, 82.19it/s]
1769
  43%|████▎ | 581/1355 [00:07<00:09, 80.37it/s]
1770
  44%|████▎ | 590/1355 [00:07<00:09, 81.18it/s]
1771
  44%|████▍ | 599/1355 [00:07<00:09, 80.25it/s]
1772
  45%|████▍ | 608/1355 [00:07<00:09, 77.59it/s]
1773
  46%|████▌ | 617/1355 [00:07<00:09, 79.00it/s]
1774
  46%|████▌ | 625/1355 [00:07<00:09, 78.08it/s]
1775
  47%|████▋ | 633/1355 [00:07<00:09, 78.24it/s]
1776
  47%|████▋ | 642/1355 [00:07<00:08, 79.32it/s]
1777
  48%|████▊ | 651/1355 [00:08<00:08, 80.44it/s]
1778
  49%|████▊ | 660/1355 [00:08<00:08, 82.22it/s]
1779
  49%|████▉ | 669/1355 [00:08<00:09, 76.21it/s]
1780
  50%|█████ | 678/1355 [00:08<00:08, 77.55it/s]
1781
  51%|█████ | 687/1355 [00:08<00:08, 78.58it/s]
1782
  51%|█████▏ | 696/1355 [00:08<00:08, 79.87it/s]
1783
  52%|█████▏ | 705/1355 [00:08<00:08, 78.11it/s]
1784
  53%|█████▎ | 714/1355 [00:08<00:07, 80.50it/s]
1785
  53%|█████▎ | 723/1355 [00:08<00:07, 80.12it/s]
1786
  54%|█████▍ | 732/1355 [00:09<00:07, 80.88it/s]
1787
  55%|█████▍ | 741/1355 [00:09<00:07, 78.39it/s]
1788
  55%|█████▌ | 750/1355 [00:09<00:07, 79.64it/s]
1789
  56%|█████▌ | 758/1355 [00:09<00:07, 78.30it/s]
1790
  57%|█████▋ | 766/1355 [00:09<00:07, 78.43it/s]
1791
  57%|█████▋ | 775/1355 [00:09<00:07, 81.16it/s]
1792
  58%|█████▊ | 784/1355 [00:09<00:07, 76.55it/s]
1793
  59%|█████▊ | 793/1355 [00:09<00:07, 78.18it/s]
1794
  59%|█████▉ | 801/1355 [00:09<00:07, 78.59it/s]
1795
  60%|█████▉ | 810/1355 [00:10<00:06, 81.02it/s]
1796
  60%|██████ | 819/1355 [00:10<00:06, 81.88it/s]
1797
  61%|██████ | 828/1355 [00:10<00:06, 81.33it/s]
1798
  62%|██████▏ | 837/1355 [00:10<00:06, 80.79it/s]
1799
  62%|██████▏ | 846/1355 [00:10<00:06, 80.11it/s]
1800
  63%|██████▎ | 855/1355 [00:10<00:06, 80.41it/s]
1801
  64%|██████▍ | 864/1355 [00:10<00:06, 81.38it/s]
1802
  64%|██████▍ | 873/1355 [00:10<00:05, 82.00it/s]
1803
  65%|██████▌ | 882/1355 [00:10<00:05, 82.54it/s]
1804
  66%|██████▌ | 891/1355 [00:11<00:05, 82.98it/s]
1805
  66%|██████▋ | 900/1355 [00:11<00:05, 82.84it/s]
1806
  67%|██████▋ | 909/1355 [00:11<00:05, 83.28it/s]
1807
  68%|██████▊ | 918/1355 [00:11<00:05, 83.30it/s]
1808
  68%|██████▊ | 927/1355 [00:11<00:05, 80.41it/s]
1809
  69%|██████▉ | 936/1355 [00:11<00:05, 79.47it/s]
1810
  70%|██████▉ | 945/1355 [00:11<00:05, 80.81it/s]
1811
  70%|███████ | 954/1355 [00:11<00:04, 81.93it/s]
1812
  71%|███████ | 963/1355 [00:11<00:04, 80.07it/s]
1813
  72%|███████▏ | 972/1355 [00:12<00:05, 76.41it/s]
1814
  72%|███████▏ | 980/1355 [00:12<00:04, 77.20it/s]
1815
  73%|███████▎ | 988/1355 [00:12<00:04, 77.77it/s]
1816
  74%|███████▎ | 996/1355 [00:12<00:04, 78.35it/s]
1817
  74%|███████▍ | 1005/1355 [00:12<00:04, 80.44it/s]
1818
  75%|███████▍ | 1014/1355 [00:12<00:04, 79.12it/s]
1819
  75%|███████▌ | 1022/1355 [00:12<00:04, 78.30it/s]
1820
  76%|███████▌ | 1030/1355 [00:12<00:04, 78.23it/s]
1821
  77%|███████▋ | 1039/1355 [00:12<00:03, 79.57it/s]
1822
  77%|███████▋ | 1048/1355 [00:13<00:03, 81.05it/s]
1823
  78%|███████▊ | 1057/1355 [00:13<00:03, 79.79it/s]
1824
  79%|███████▊ | 1066/1355 [00:13<00:03, 81.05it/s]
1825
  79%|███████▉ | 1075/1355 [00:13<00:03, 81.44it/s]
1826
  80%|████████ | 1084/1355 [00:13<00:03, 80.30it/s]
1827
  81%|████████ | 1093/1355 [00:13<00:03, 80.00it/s]
1828
  81%|████████▏ | 1102/1355 [00:13<00:03, 80.32it/s]
1829
  82%|████████▏ | 1111/1355 [00:13<00:03, 76.79it/s]
1830
  83%|████████▎ | 1119/1355 [00:13<00:03, 76.96it/s]
1831
  83%|████████▎ | 1127/1355 [00:14<00:02, 76.68it/s]
1832
  84%|████████▍ | 1136/1355 [00:14<00:02, 76.22it/s]
1833
  85%|████████▍ | 1145/1355 [00:14<00:02, 78.00it/s]
1834
  85%|████████▌ | 1153/1355 [00:14<00:02, 77.95it/s]
1835
  86%|████████▌ | 1161/1355 [00:14<00:02, 76.16it/s]
1836
  86%|████████▋ | 1169/1355 [00:14<00:02, 76.13it/s]
1837
  87%|████████▋ | 1177/1355 [00:14<00:02, 77.20it/s]
1838
  88%|████████▊ | 1186/1355 [00:14<00:02, 77.96it/s]
1839
  88%|████████▊ | 1195/1355 [00:14<00:02, 78.39it/s]
1840
  89%|████████▉ | 1203/1355 [00:15<00:01, 78.18it/s]
1841
  89%|████████▉ | 1212/1355 [00:15<00:01, 79.03it/s]
1842
  90%|█████████ | 1220/1355 [00:15<00:01, 76.62it/s]
1843
  91%|█████████ | 1229/1355 [00:15<00:01, 77.65it/s]
1844
  91%|█████████▏| 1237/1355 [00:15<00:01, 77.55it/s]
1845
  92%|█████████▏| 1245/1355 [00:15<00:01, 77.78it/s]
1846
  92%|█████████▏| 1253/1355 [00:15<00:01, 78.26it/s]
1847
  93%|█████████▎| 1262/1355 [00:15<00:01, 79.17it/s]
1848
  94%|█████████▎| 1270/1355 [00:15<00:01, 79.22it/s]
1849
  94%|█████████▍| 1279/1355 [00:16<00:00, 80.05it/s]
1850
  95%|█████████▌| 1288/1355 [00:16<00:00, 81.28it/s]
1851
  96%|█████████▌| 1297/1355 [00:16<00:00, 80.80it/s]
1852
  96%|█████████▋| 1306/1355 [00:16<00:00, 79.04it/s]
1853
  97%|█████████▋| 1314/1355 [00:16<00:00, 79.26it/s]
1854
  98%|█████████▊| 1322/1355 [00:16<00:00, 79.15it/s]
1855
  98%|█████████▊| 1330/1355 [00:16<00:00, 79.26it/s]
1856
  99%|█████████▊| 1338/1355 [00:16<00:00, 76.91it/s]
1857
  99%|█████████▉| 1346/1355 [00:16<00:00, 77.65it/s]
1858
+ [INFO|trainer.py:3503] 2024-09-05 22:05:23,351 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1859
+ [INFO|configuration_utils.py:472] 2024-09-05 22:05:23,353 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1860
+ [INFO|modeling_utils.py:2799] 2024-09-05 22:05:24,590 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1861
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 22:05:24,591 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1862
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 22:05:24,591 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1863
+ ***** predict metrics *****
1864
+ predict_accuracy = 0.992
1865
+ predict_f1 = 0.8562
1866
+ predict_loss = 0.047
1867
+ predict_precision = 0.8359
1868
+ predict_recall = 0.8774
1869
+ predict_runtime = 0:00:23.00
1870
+ predict_samples_per_second = 471.149
1871
+ predict_steps_per_second = 58.904
1872
+
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.5369860684670966e+16,
4
+ "train_loss": 0.009731636565258824,
5
+ "train_runtime": 1413.3317,
6
+ "train_samples": 32675,
7
+ "train_samples_per_second": 231.191,
8
+ "train_steps_per_second": 3.616
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8506998444790046,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4599",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5110,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9784735812133072,
13
+ "grad_norm": 0.2284504771232605,
14
+ "learning_rate": 4.510763209393347e-05,
15
+ "loss": 0.0542,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_accuracy": 0.9894745923561384,
21
+ "eval_f1": 0.7720770551211139,
22
+ "eval_loss": 0.027118448168039322,
23
+ "eval_precision": 0.7485207100591716,
24
+ "eval_recall": 0.7971642378889326,
25
+ "eval_runtime": 15.6605,
26
+ "eval_samples_per_second": 469.589,
27
+ "eval_steps_per_second": 58.746,
28
+ "step": 511
29
+ },
30
+ {
31
+ "epoch": 1.9569471624266144,
32
+ "grad_norm": 0.6956239342689514,
33
+ "learning_rate": 4.021526418786693e-05,
34
+ "loss": 0.0184,
35
+ "step": 1000
36
+ },
37
+ {
38
+ "epoch": 2.0,
39
+ "eval_accuracy": 0.9906364133091766,
40
+ "eval_f1": 0.8196286472148541,
41
+ "eval_loss": 0.027706459164619446,
42
+ "eval_precision": 0.7897042716319824,
43
+ "eval_recall": 0.8519102008664828,
44
+ "eval_runtime": 15.4779,
45
+ "eval_samples_per_second": 475.128,
46
+ "eval_steps_per_second": 59.439,
47
+ "step": 1022
48
+ },
49
+ {
50
+ "epoch": 2.935420743639922,
51
+ "grad_norm": 0.465753972530365,
52
+ "learning_rate": 3.53228962818004e-05,
53
+ "loss": 0.0103,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 3.0,
58
+ "eval_accuracy": 0.9913726166853594,
59
+ "eval_f1": 0.8360814742967991,
60
+ "eval_loss": 0.03051806427538395,
61
+ "eval_precision": 0.8237767584097859,
62
+ "eval_recall": 0.848759354076408,
63
+ "eval_runtime": 15.7367,
64
+ "eval_samples_per_second": 467.314,
65
+ "eval_steps_per_second": 58.462,
66
+ "step": 1533
67
+ },
68
+ {
69
+ "epoch": 3.9138943248532287,
70
+ "grad_norm": 0.46147385239601135,
71
+ "learning_rate": 3.0430528375733857e-05,
72
+ "loss": 0.0058,
73
+ "step": 2000
74
+ },
75
+ {
76
+ "epoch": 4.0,
77
+ "eval_accuracy": 0.9913208523854715,
78
+ "eval_f1": 0.8364197530864197,
79
+ "eval_loss": 0.032038912177085876,
80
+ "eval_precision": 0.8196597353497165,
81
+ "eval_recall": 0.8538794801102796,
82
+ "eval_runtime": 15.567,
83
+ "eval_samples_per_second": 472.41,
84
+ "eval_steps_per_second": 59.099,
85
+ "step": 2044
86
+ },
87
+ {
88
+ "epoch": 4.892367906066536,
89
+ "grad_norm": 0.1297295242547989,
90
+ "learning_rate": 2.553816046966732e-05,
91
+ "loss": 0.0041,
92
+ "step": 2500
93
+ },
94
+ {
95
+ "epoch": 5.0,
96
+ "eval_accuracy": 0.9916544445403043,
97
+ "eval_f1": 0.8406766325727772,
98
+ "eval_loss": 0.037402600049972534,
99
+ "eval_precision": 0.8396856581532417,
100
+ "eval_recall": 0.8416699487987397,
101
+ "eval_runtime": 15.6627,
102
+ "eval_samples_per_second": 469.523,
103
+ "eval_steps_per_second": 58.738,
104
+ "step": 2555
105
+ },
106
+ {
107
+ "epoch": 5.870841487279844,
108
+ "grad_norm": 0.04726821184158325,
109
+ "learning_rate": 2.064579256360078e-05,
110
+ "loss": 0.0026,
111
+ "step": 3000
112
+ },
113
+ {
114
+ "epoch": 6.0,
115
+ "eval_accuracy": 0.9916601961291807,
116
+ "eval_f1": 0.8435241258058215,
117
+ "eval_loss": 0.04270775243639946,
118
+ "eval_precision": 0.8368217054263566,
119
+ "eval_recall": 0.8503347774714455,
120
+ "eval_runtime": 15.5727,
121
+ "eval_samples_per_second": 472.237,
122
+ "eval_steps_per_second": 59.078,
123
+ "step": 3066
124
+ },
125
+ {
126
+ "epoch": 6.8493150684931505,
127
+ "grad_norm": 0.25813549757003784,
128
+ "learning_rate": 1.5753424657534248e-05,
129
+ "loss": 0.0015,
130
+ "step": 3500
131
+ },
132
+ {
133
+ "epoch": 7.0,
134
+ "eval_accuracy": 0.9911828142524373,
135
+ "eval_f1": 0.8397768801692633,
136
+ "eval_loss": 0.045068006962537766,
137
+ "eval_precision": 0.8206766917293233,
138
+ "eval_recall": 0.85978731784167,
139
+ "eval_runtime": 15.5993,
140
+ "eval_samples_per_second": 471.433,
141
+ "eval_steps_per_second": 58.977,
142
+ "step": 3577
143
+ },
144
+ {
145
+ "epoch": 7.8277886497064575,
146
+ "grad_norm": 0.22853463888168335,
147
+ "learning_rate": 1.086105675146771e-05,
148
+ "loss": 0.0013,
149
+ "step": 4000
150
+ },
151
+ {
152
+ "epoch": 8.0,
153
+ "eval_accuracy": 0.991637189773675,
154
+ "eval_f1": 0.8470906630581867,
155
+ "eval_loss": 0.04481955245137215,
156
+ "eval_precision": 0.8318147304479878,
157
+ "eval_recall": 0.8629381646317448,
158
+ "eval_runtime": 15.9638,
159
+ "eval_samples_per_second": 460.669,
160
+ "eval_steps_per_second": 57.631,
161
+ "step": 4088
162
+ },
163
+ {
164
+ "epoch": 8.806262230919765,
165
+ "grad_norm": 0.009220785461366177,
166
+ "learning_rate": 5.9686888454011745e-06,
167
+ "loss": 0.0007,
168
+ "step": 4500
169
+ },
170
+ {
171
+ "epoch": 9.0,
172
+ "eval_accuracy": 0.9916544445403043,
173
+ "eval_f1": 0.8506998444790046,
174
+ "eval_loss": 0.04956069961190224,
175
+ "eval_precision": 0.8399232245681382,
176
+ "eval_recall": 0.8617565970854667,
177
+ "eval_runtime": 15.6877,
178
+ "eval_samples_per_second": 468.774,
179
+ "eval_steps_per_second": 58.645,
180
+ "step": 4599
181
+ },
182
+ {
183
+ "epoch": 9.784735812133073,
184
+ "grad_norm": 0.5473453402519226,
185
+ "learning_rate": 1.076320939334638e-06,
186
+ "loss": 0.0006,
187
+ "step": 5000
188
+ },
189
+ {
190
+ "epoch": 10.0,
191
+ "eval_accuracy": 0.9916486929514279,
192
+ "eval_f1": 0.8506998444790046,
193
+ "eval_loss": 0.05025585740804672,
194
+ "eval_precision": 0.8399232245681382,
195
+ "eval_recall": 0.8617565970854667,
196
+ "eval_runtime": 16.4037,
197
+ "eval_samples_per_second": 448.314,
198
+ "eval_steps_per_second": 56.085,
199
+ "step": 5110
200
+ },
201
+ {
202
+ "epoch": 10.0,
203
+ "step": 5110,
204
+ "total_flos": 1.5369860684670966e+16,
205
+ "train_loss": 0.009731636565258824,
206
+ "train_runtime": 1413.3317,
207
+ "train_samples_per_second": 231.191,
208
+ "train_steps_per_second": 3.616
209
+ }
210
+ ],
211
+ "logging_steps": 500,
212
+ "max_steps": 5110,
213
+ "num_input_tokens_seen": 0,
214
+ "num_train_epochs": 10,
215
+ "save_steps": 500,
216
+ "stateful_callbacks": {
217
+ "TrainerControl": {
218
+ "args": {
219
+ "should_epoch_stop": false,
220
+ "should_evaluate": false,
221
+ "should_log": false,
222
+ "should_save": true,
223
+ "should_training_stop": true
224
+ },
225
+ "attributes": {}
226
+ }
227
+ },
228
+ "total_flos": 1.5369860684670966e+16,
229
+ "train_batch_size": 32,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }