Rodrigo1771's picture
End of training
dbe731b verified
metadata
library_name: transformers
license: apache-2.0
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
tags:
  - token-classification
  - generated_from_trainer
datasets:
  - Rodrigo1771/distemist-85-ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Rodrigo1771/distemist-85-ner
          type: Rodrigo1771/distemist-85-ner
          config: DisTEMIST NER
          split: validation
          args: DisTEMIST NER
        metrics:
          - name: Precision
            type: precision
            value: 0.803175344384777
          - name: Recall
            type: recall
            value: 0.8048666354702855
          - name: F1
            type: f1
            value: 0.8040201005025126
          - name: Accuracy
            type: accuracy
            value: 0.9764853694371592

output

This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/distemist-85-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1424
  • Precision: 0.8032
  • Recall: 0.8049
  • F1: 0.8040
  • Accuracy: 0.9765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9990 499 0.0739 0.7271 0.7953 0.7596 0.9731
0.105 2.0 999 0.0908 0.7436 0.7890 0.7656 0.9729
0.0448 2.9990 1498 0.0930 0.7676 0.7990 0.7830 0.9744
0.0255 4.0 1998 0.1052 0.7806 0.7983 0.7894 0.9757
0.0164 4.9990 2497 0.1100 0.7756 0.8007 0.7879 0.9750
0.0112 6.0 2997 0.1266 0.7869 0.8124 0.7994 0.9768
0.0073 6.9990 3496 0.1288 0.7929 0.8009 0.7969 0.9763
0.0054 8.0 3996 0.1424 0.8032 0.8049 0.8040 0.9765
0.0038 8.9990 4495 0.1455 0.7901 0.8042 0.7971 0.9765
0.0028 9.9900 4990 0.1497 0.7898 0.8072 0.7984 0.9768

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1