|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es |
|
tags: |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Rodrigo1771/distemist-85-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: output |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Rodrigo1771/distemist-85-ner |
|
type: Rodrigo1771/distemist-85-ner |
|
config: DisTEMIST NER |
|
split: validation |
|
args: DisTEMIST NER |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.803175344384777 |
|
- name: Recall |
|
type: recall |
|
value: 0.8048666354702855 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8040201005025126 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9764853694371592 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output |
|
|
|
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/distemist-85-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1424 |
|
- Precision: 0.8032 |
|
- Recall: 0.8049 |
|
- F1: 0.8040 |
|
- Accuracy: 0.9765 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9990 | 499 | 0.0739 | 0.7271 | 0.7953 | 0.7596 | 0.9731 | |
|
| 0.105 | 2.0 | 999 | 0.0908 | 0.7436 | 0.7890 | 0.7656 | 0.9729 | |
|
| 0.0448 | 2.9990 | 1498 | 0.0930 | 0.7676 | 0.7990 | 0.7830 | 0.9744 | |
|
| 0.0255 | 4.0 | 1998 | 0.1052 | 0.7806 | 0.7983 | 0.7894 | 0.9757 | |
|
| 0.0164 | 4.9990 | 2497 | 0.1100 | 0.7756 | 0.8007 | 0.7879 | 0.9750 | |
|
| 0.0112 | 6.0 | 2997 | 0.1266 | 0.7869 | 0.8124 | 0.7994 | 0.9768 | |
|
| 0.0073 | 6.9990 | 3496 | 0.1288 | 0.7929 | 0.8009 | 0.7969 | 0.9763 | |
|
| 0.0054 | 8.0 | 3996 | 0.1424 | 0.8032 | 0.8049 | 0.8040 | 0.9765 | |
|
| 0.0038 | 8.9990 | 4495 | 0.1455 | 0.7901 | 0.8042 | 0.7971 | 0.9765 | |
|
| 0.0028 | 9.9900 | 4990 | 0.1497 | 0.7898 | 0.8072 | 0.7984 | 0.9768 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|