|
--- |
|
license: mit |
|
base_model: numind/entity-recognition-general-sota-v1 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: entity-recognition-general-sota-v1-finetuned-ner-X |
|
results: [] |
|
datasets: |
|
- Babelscape/multinerd |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
## Model description |
|
# entity-recognition-general-sota-v1-finetuned-ner-X |
|
|
|
This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on an Babelscape/MultiNerd dataset. |
|
|
|
It achieves the following results on the validation set: |
|
- Loss: 0.0228 |
|
- Precision: 0.9472 |
|
- Recall: 0.9621 |
|
- F1: 0.9546 |
|
- Accuracy: 0.9915 |
|
|
|
|
|
## Training and evaluation data |
|
|
|
The dataset if filtered on english language and sampled first 1M on train and 100k on validation. |
|
further filtered with data containing atleast one tag from labels2ids mentioned below. |
|
Train data - 110723 items |
|
Validation data - 13126 items |
|
|
|
Trained on below listed tags from the MultiNERD dataset. |
|
|
|
labels2ids_B = { |
|
"O": 0, |
|
"B-PER": 1, |
|
"I-PER": 2, |
|
"B-ORG": 3, |
|
"I-ORG": 4, |
|
"B-LOC": 5, |
|
"I-LOC": 6, |
|
"B-ANIM": 7, |
|
"I-ANIM": 8, |
|
"B-DIS": 9, |
|
"I-DIS": 10 |
|
} |
|
|
|
## Training procedure |
|
|
|
HF Trainer module |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 35 |
|
- eval_batch_size: 35 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training & Test set evaluation results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0214 | 1.0 | 3164 | 0.0228 | 0.9472 | 0.9621 | 0.9546 | 0.9915 | |
|
|
|
|
|
Test set Evaluation results: |
|
{ |
|
'eval_loss': 0.017866812646389008, |
|
'eval_precision': 0.9557654500384648, |
|
'eval_recall': 0.9739558381603589, |
|
'eval_accuracy': 0.9931328078645237, |
|
'eval_runtime': 109.6919, |
|
'eval_samples_per_second': 269.045, |
|
'eval_steps_per_second': 33.631 |
|
} |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |