|
--- |
|
base_model: Shehryar718/URDU-ASR |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: URDU-ASR-25-EPOCH |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_13_0 |
|
type: common_voice_13_0 |
|
config: ur |
|
split: test |
|
args: ur |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.4924368447522148 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# URDU-ASR-25-EPOCH |
|
|
|
This model is a fine-tuned version of [Shehryar718/URDU-ASR](https://huggingface.co/Shehryar718/URDU-ASR) on the common_voice_13_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7833 |
|
- Wer: 0.4924 |
|
- Cer: 0.2059 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00025 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 25 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 3.5981 | 1.0 | 341 | 0.7487 | 0.5453 | 0.2200 | |
|
| 0.2559 | 2.0 | 683 | 0.7159 | 0.5086 | 0.2077 | |
|
| 0.3018 | 3.0 | 1024 | 0.7059 | 0.5457 | 0.2325 | |
|
| 0.2848 | 4.0 | 1366 | 0.6575 | 0.5464 | 0.2350 | |
|
| 0.2599 | 5.0 | 1707 | 0.6924 | 0.5436 | 0.2346 | |
|
| 0.2479 | 6.0 | 2049 | 0.6785 | 0.5372 | 0.2254 | |
|
| 0.2363 | 7.0 | 2390 | 0.7261 | 0.5356 | 0.2284 | |
|
| 0.2225 | 8.0 | 2732 | 0.7228 | 0.5199 | 0.2268 | |
|
| 0.2038 | 9.0 | 3073 | 0.7688 | 0.5248 | 0.2218 | |
|
| 0.1944 | 10.0 | 3415 | 0.7385 | 0.5384 | 0.2298 | |
|
| 0.1908 | 11.0 | 3756 | 0.7569 | 0.5325 | 0.2283 | |
|
| 0.1899 | 12.0 | 4098 | 0.7458 | 0.5088 | 0.2106 | |
|
| 0.1728 | 13.0 | 4439 | 0.7386 | 0.5326 | 0.2236 | |
|
| 0.1762 | 14.0 | 4781 | 0.7521 | 0.5297 | 0.2265 | |
|
| 0.1762 | 15.0 | 5122 | 0.7338 | 0.5197 | 0.2184 | |
|
| 0.1666 | 16.0 | 5464 | 0.7795 | 0.5294 | 0.2149 | |
|
| 0.1605 | 17.0 | 5805 | 0.7622 | 0.5092 | 0.2211 | |
|
| 0.1539 | 18.0 | 6147 | 0.7756 | 0.5144 | 0.2132 | |
|
| 0.1472 | 19.0 | 6488 | 0.7522 | 0.4989 | 0.2094 | |
|
| 0.1399 | 20.0 | 6830 | 0.7691 | 0.5144 | 0.2171 | |
|
| 0.1341 | 21.0 | 7171 | 0.7673 | 0.4992 | 0.2079 | |
|
| 0.1278 | 22.0 | 7513 | 0.7807 | 0.4889 | 0.2005 | |
|
| 0.1235 | 23.0 | 7854 | 0.7924 | 0.4932 | 0.2060 | |
|
| 0.1189 | 24.0 | 8196 | 0.7876 | 0.4954 | 0.2060 | |
|
| 0.1167 | 24.96 | 8525 | 0.7833 | 0.4924 | 0.2059 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.14.1 |
|
|