|
--- |
|
base_model: google-bert/bert-base-uncased |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:97043 |
|
- loss:DenoisingAutoEncoderLoss |
|
widget: |
|
- source_sentence: ढचणच𑀟च𑀟 |
|
sentences: |
|
- ढ𑀢ढल𑀢𑁣ब𑀪चध𑀫ण ढचणच𑀟च𑀟 𑀞नलच𑀠च𑀟च𑀤च𑀪पच𑀯 |
|
- ' णच 𑀪𑀢𑀞𑁦 𑀱च𑀟𑀟च𑀟 𑀠न𑀞च𑀠𑀢𑀟 𑀫च𑀪 𑀤न𑀱च 𑀭थ𑁢𑀰𑀯' |
|
- ' च त𑀢𑀞𑀢𑀟 𑀠च𑀘चल𑀢𑀳च𑀪𑀠च𑀟च𑀤च𑀪पच𑀯' |
|
- source_sentence: त𑁣𑀠 |
|
sentences: |
|
- ' 𑀲𑀪𑁦𑁦𑀣𑁣𑀠 𑀫𑁣न𑀳𑁦 पच ढच𑀢𑀱च 𑀳न𑀣च𑀟 𑀠चप𑀳चण𑀢 𑀠च𑀲𑀢 झच𑀳झच𑀟त𑀢 च प𑀳च𑀞च𑀟𑀢𑀟 ब𑀱च𑀠𑀟चप𑁣त𑀢𑀟 𑀣च𑀟𑀟𑀢णच |
|
च 𑀳𑀫𑁦𑀞च𑀪च पच ठ𑀧𑀭ठ𑀯' |
|
- 𑀖𑀖फ𑀮𑀦 𑁣𑀪𑁣𑀠𑁣 𑀝ठ𑀗𑀯 |
|
- त𑁣𑀠 𑀯 |
|
- source_sentence: 𑀣च𑀟णच𑀟 𑀝𑀭थथ𑀬षठ𑀧𑀧ठ𑀮 |
|
sentences: |
|
- ' 𑀣च𑀟णच𑀟 𑀝𑀭थथ𑀬षठ𑀧𑀧ठ𑀮 ध𑀪𑁣𑀲𑀯' |
|
- 𑀳त𑀯 |
|
- ' 𑀳𑀫𑀢 ञच 𑀟𑁦 बच लच𑀲पच𑀟च𑀪 त𑁣ल𑀯' |
|
- source_sentence: 𑀠च𑀟च𑀤च𑀪पच𑀯 |
|
sentences: |
|
- ' धच𑀪𑀞𑁦𑀪𑀦 लचनणच𑀟 ढ𑁣𑀳प𑁣𑀟𑀯' |
|
- ब𑀪𑁦चपषधण𑀪च𑀠𑀢𑀣𑀯 |
|
- 𑀠च𑀟च𑀤च𑀪पच𑀯 |
|
- source_sentence: 𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च |
|
sentences: |
|
- ' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯' |
|
- 𑀯 |
|
- 𑀯 |
|
--- |
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("T-Blue/tsdae_pro_mbert") |
|
# Run inference |
|
sentences = [ |
|
'𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च', |
|
' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯', |
|
'𑀯', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 97,043 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.12 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.06 tokens</li><li>max: 56 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-------------------|:------------------------| |
|
| <code>च𑀞𑀱च𑀢</code> | <code> च𑀞𑀱च𑀢 𑀭ठ𑀯</code> | |
|
| <code>ठ𑀧𑀧𑁢𑀯</code> | <code> ठ𑀧𑀧𑁢𑀯</code> | |
|
| <code>𑁢𑀗𑀯</code> | <code>𑁢𑀗𑀯</code> | |
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:-----:|:-------------:| |
|
| 0.0824 | 500 | 1.1372 | |
|
| 0.1649 | 1000 | 0.8075 | |
|
| 0.2473 | 1500 | 0.7708 | |
|
| 0.3297 | 2000 | 0.7464 | |
|
| 0.4121 | 2500 | 0.7286 | |
|
| 0.4946 | 3000 | 0.7187 | |
|
| 0.5770 | 3500 | 0.7089 | |
|
| 0.6594 | 4000 | 0.6942 | |
|
| 0.7418 | 4500 | 0.7022 | |
|
| 0.8243 | 5000 | 0.6939 | |
|
| 0.9067 | 5500 | 0.6859 | |
|
| 0.9891 | 6000 | 0.6807 | |
|
| 1.0715 | 6500 | 0.6841 | |
|
| 1.1540 | 7000 | 0.6764 | |
|
| 1.2364 | 7500 | 0.6705 | |
|
| 1.3188 | 8000 | 0.6712 | |
|
| 1.4013 | 8500 | 0.6683 | |
|
| 1.4837 | 9000 | 0.6662 | |
|
| 1.5661 | 9500 | 0.6635 | |
|
| 1.6485 | 10000 | 0.655 | |
|
| 1.7310 | 10500 | 0.6667 | |
|
| 1.8134 | 11000 | 0.6533 | |
|
| 1.8958 | 11500 | 0.6564 | |
|
| 1.9782 | 12000 | 0.646 | |
|
| 2.0607 | 12500 | 0.6522 | |
|
| 2.1431 | 13000 | 0.6466 | |
|
| 2.2255 | 13500 | 0.6464 | |
|
| 2.3079 | 14000 | 0.647 | |
|
| 2.3904 | 14500 | 0.6408 | |
|
| 2.4728 | 15000 | 0.6415 | |
|
| 2.5552 | 15500 | 0.6397 | |
|
| 2.6377 | 16000 | 0.6303 | |
|
| 2.7201 | 16500 | 0.6465 | |
|
| 2.8025 | 17000 | 0.6287 | |
|
| 2.8849 | 17500 | 0.6358 | |
|
| 2.9674 | 18000 | 0.6247 | |
|
| 3.0498 | 18500 | 0.6318 | |
|
| 3.1322 | 19000 | 0.627 | |
|
| 3.2146 | 19500 | 0.6222 | |
|
| 3.2971 | 20000 | 0.6262 | |
|
| 3.3795 | 20500 | 0.6197 | |
|
| 3.4619 | 21000 | 0.6234 | |
|
| 3.5443 | 21500 | 0.6193 | |
|
| 3.6268 | 22000 | 0.6088 | |
|
| 3.7092 | 22500 | 0.624 | |
|
| 3.7916 | 23000 | 0.6089 | |
|
| 3.8741 | 23500 | 0.6184 | |
|
| 3.9565 | 24000 | 0.6047 | |
|
| 4.0389 | 24500 | 0.6066 | |
|
| 4.1213 | 25000 | 0.6082 | |
|
| 4.2038 | 25500 | 0.5999 | |
|
| 4.2862 | 26000 | 0.6046 | |
|
| 4.3686 | 26500 | 0.6038 | |
|
| 4.4510 | 27000 | 0.5978 | |
|
| 4.5335 | 27500 | 0.5948 | |
|
| 4.6159 | 28000 | 0.5887 | |
|
| 4.6983 | 28500 | 0.6031 | |
|
| 4.7807 | 29000 | 0.5823 | |
|
| 4.8632 | 29500 | 0.5953 | |
|
| 4.9456 | 30000 | 0.5793 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### DenoisingAutoEncoderLoss |
|
```bibtex |
|
@inproceedings{wang-2021-TSDAE, |
|
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", |
|
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", |
|
month = nov, |
|
year = "2021", |
|
address = "Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
pages = "671--688", |
|
url = "https://arxiv.org/abs/2104.06979", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |