metadata
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- T145/ZEUS-8B-V2
license: llama3.1
model-index:
- name: ZEUS-8B-V2-abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 74.57
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.34
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 20.39
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.05
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.59
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.94
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
ZEUS 8B 🌩️ V2 - ABLITERATED
V2 abliterated using the following script:
import gc
import random
import torch
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
MODEL_ID = "T145/ZEUS-8B-V2"
# More samples can help find the direction better.
NUM_PROMPT_SAMPLES = 32
# Used to skip the first and last layers for the modifications.
SKIP_BEGIN_LAYERS = 1
SKIP_END_LAYERS = 1
# The layer we will use for the refusal_dir calculation will be floor(LAYER_FRACTION_TO_USE * model.layers).
LAYER_FRACTION_TO_USE = 0.6
# Use a negative scale_factor to "induce" and a positive scale_factor of < 1 to "ablate" less.
SCALE_FACTOR = 1.0
torch.inference_mode()
torch.set_default_device("cpu")
torch.set_grad_enabled(False)
# Load the model on the GPU in quantized type if we can.
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16),
low_cpu_mem_usage=True,
device_map='auto'
)
model.requires_grad_(False)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
layer_idx = int(len(model.model.layers) * LAYER_FRACTION_TO_USE)
print("Layer index for refusal direction: " + str(layer_idx))
with open("harmful.txt", "r", encoding="utf-8") as f:
harmful = f.readlines()
with open("harmless.txt", "r", encoding="utf-8") as f:
harmless = f.readlines()
harmful_instructions = random.sample(harmful, min(NUM_PROMPT_SAMPLES, len(harmful)))
harmless_instructions = random.sample(harmless, min(NUM_PROMPT_SAMPLES, len(harmless)))
harmful_toks = [
tokenizer.apply_chat_template(conversation=[{"role": "user", "content": insn}], add_generation_prompt=True, tokenize=False,
return_tensors="pt") for insn in harmful_instructions]
harmless_toks = [
tokenizer.apply_chat_template(conversation=[{"role": "user", "content": insn}], add_generation_prompt=True, tokenize=False,
return_tensors="pt") for insn in harmless_instructions]
bar_generate = tqdm(total = len(harmful_instructions) + len(harmless_instructions), desc = "Generating samples")
# Only return the final hidden state of the layer we care about, and use 'cpu' to save VRAM.
def generate(toks):
inputs = tokenizer(toks, return_tensors="pt", padding=True)
inputs = inputs.to(model.device)
output = model.generate(
inputs['input_ids'],
use_cache=False,
max_new_tokens=1,
return_dict_in_generate=True,
output_hidden_states=True,
attention_mask=inputs["attention_mask"],
pad_token_id=tokenizer.eos_token_id
)
bar_generate.update(n=1)
return output.hidden_states[0][layer_idx][:, -1, :].to('cpu') # Final hidden state = -1.
harmful_hidden = [generate(toks) for toks in harmful_toks]
harmless_hidden = [generate(toks) for toks in harmless_toks]
bar_generate.close()
harmful_mean = torch.stack(harmful_hidden).mean(dim=0)
harmless_mean = torch.stack(harmless_hidden).mean(dim=0)
refusal_dir = harmful_mean - harmless_mean
refusal_dir = refusal_dir.squeeze() / refusal_dir.norm()
torch.save(refusal_dir, MODEL_ID.replace("/", "_") + "_refusal_dir.pt")
# Free memory
del model
gc.collect()
torch.cuda.empty_cache()
# Reload the model in CPU memory with bfloat16 data type
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map='cpu'
)
model.requires_grad_(False)
# Make sure it's on the 'cpu' device.
if refusal_dir.device != model.device:
refusal_dir = refusal_dir.to(model.device)
# Get the language model component and check it's as expected.
lm_model = model.model
assert hasattr(lm_model, 'layers'), "The model does not have the expected structure."
# Check the ranges are valid.
num_layers = len(lm_model.layers)
assert SKIP_BEGIN_LAYERS >= 0, "SKIP_BEGIN_LAYERS must be >= 0."
assert SKIP_END_LAYERS >= 0, "SKIP_END_LAYERS must be >= 0."
assert SKIP_BEGIN_LAYERS + SKIP_END_LAYERS < num_layers, "SKIP_BEGIN_LAYERS + SKIP_END_LAYERS must be < num_layers."
bar_layers = tqdm(total= (num_layers - (SKIP_BEGIN_LAYERS + SKIP_END_LAYERS)) * 2, desc = "Modifying tensors")
# NOTE: Use a negative scale_factor to "induce" and a positive scale_factor of < 1 to "ablate" less.
def modify_tensor(tensor_data, refusal_dir, scale_factor: float = 1.0):
assert scale_factor <= 1.0, "Using a scale_factor of > 1 doesn't make sense..."
tensor_float = tensor_data.to(torch.bfloat16)
refusal_dir_float = refusal_dir.to(torch.bfloat16)
tensor_float -= scale_factor * torch.matmul(torch.outer(refusal_dir_float, refusal_dir_float), tensor_float)
tensor_modified = tensor_float.to(torch.bfloat16)
bar_layers.update(1)
return torch.nn.Parameter(tensor_modified)
# Modify the 'self_attn.o_proj.weight' and 'mlp.down_proj.weight' in each chosen layer.
# NOTE: These tensors names are speific to "llama" and may need changing.
# - See here for others: https://github.com/arcee-ai/mergekit/tree/main/mergekit/_data/architectures
for layer_idx in range(SKIP_BEGIN_LAYERS, num_layers - SKIP_END_LAYERS):
lm_model.layers[layer_idx].self_attn.o_proj.weight = modify_tensor(
lm_model.layers[layer_idx].self_attn.o_proj.weight.data, refusal_dir, SCALE_FACTOR
)
lm_model.layers[layer_idx].mlp.down_proj.weight = modify_tensor(
lm_model.layers[layer_idx].mlp.down_proj.weight.data, refusal_dir, SCALE_FACTOR
)
bar_layers.close()
print("Saving modified model (with original tokenizer)...")
FIXED_ID = f"{MODEL_ID}-abliterated"
model.save_pretrained(FIXED_ID)
tokenizer.save_pretrained(FIXED_ID)
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using unsloth/Meta-Llama-3.1-8B-Instruct as a base.
Models Merged
The following models were included in the merge:
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
Configuration
The following YAML configuration was used to produce this model:
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: akjindal53244/Llama-3.1-Storm-8B
parameters:
density: 0.8
weight: 0.25
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.8
weight: 0.33
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.8
weight: 0.42
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
Open LLM Leaderboard Evaluation Results
Detailed results can be found here! Summarized results can be found here!
Metric | Value (%) |
---|---|
Average | 28.98 |
IFEval (0-Shot) | 74.57 |
BBH (3-Shot) | 30.34 |
MATH Lvl 5 (4-Shot) | 20.39 |
GPQA (0-shot) | 7.05 |
MuSR (0-shot) | 9.59 |
MMLU-PRO (5-shot) | 31.94 |