|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: multibertfinetuned1107 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multibertfinetuned1107 |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5977 |
|
- Precision: 0.6463 |
|
- Recall: 0.6078 |
|
- F1: 0.6264 |
|
- Accuracy: 0.8835 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 145 | 0.6113 | 0.6550 | 0.5854 | 0.6182 | 0.8735 | |
|
| No log | 2.0 | 290 | 0.6457 | 0.6270 | 0.5659 | 0.5949 | 0.8705 | |
|
| No log | 3.0 | 435 | 0.5977 | 0.6463 | 0.6078 | 0.6264 | 0.8835 | |
|
| 0.1409 | 4.0 | 580 | 0.6095 | 0.6752 | 0.6449 | 0.6597 | 0.8865 | |
|
| 0.1409 | 5.0 | 725 | 0.6566 | 0.6680 | 0.6380 | 0.6527 | 0.8851 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.0 |
|
- Tokenizers 0.13.3 |
|
|