bart-samsum / README.md
Venkatesh4342's picture
Training complete!
211baba
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: bart-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.547

bart-samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3852
  • Rouge1: 0.547
  • Rouge2: 0.2837
  • Rougel: 0.4462
  • Rougelsum: 0.4454
  • Gen Len: 29.72

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.5201 0.27 500 1.4589 0.5276 0.2694 0.4246 0.424 33.5067
1.3757 0.54 1000 1.5105 0.506 0.2566 0.415 0.4146 29.76
1.3496 0.81 1500 1.4039 0.5365 0.2759 0.4233 0.4221 29.8
1.094 1.09 2000 1.4119 0.5407 0.2827 0.4293 0.4288 29.84
1.1488 1.36 2500 1.3680 0.5275 0.2637 0.423 0.4224 26.92
1.1222 1.63 3000 1.2875 0.5369 0.2844 0.4473 0.4463 29.2267
1.1092 1.9 3500 1.3968 0.533 0.2818 0.4354 0.4363 30.0667
0.8509 2.17 4000 1.3682 0.5306 0.2874 0.4327 0.4331 29.1467
0.9565 2.44 4500 1.3450 0.5466 0.2782 0.4419 0.4409 29.2133
0.8496 2.72 5000 1.3768 0.5366 0.2807 0.4359 0.4351 30.7733
0.8397 2.99 5500 1.3852 0.547 0.2837 0.4462 0.4454 29.72

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3