|
--- |
|
language: vi |
|
datasets: |
|
- cc100 |
|
tags: |
|
- summarization |
|
- translation |
|
- question-answering |
|
|
|
license: mit |
|
--- |
|
|
|
# EnViT5-base |
|
|
|
State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese and English used in [MTet's paper](https://arxiv.org/abs/2210.05610). |
|
|
|
## How to use |
|
For more details, do check out [our Github repo](https://github.com/vietai/mtet). |
|
|
|
[Finetunning examples can be found here](https://github.com/vietai/ViT5/tree/main/finetunning_huggingface). |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("VietAI/envit5-base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/envit5-base") |
|
model.cuda() |
|
``` |
|
|
|
## Citation |
|
``` |
|
@misc{mtet, |
|
doi = {10.48550/ARXIV.2210.05610}, |
|
url = {https://arxiv.org/abs/2210.05610}, |
|
author = {Ngo, Chinh and Trinh, Trieu H. and Phan, Long and Tran, Hieu and Dang, Tai and Nguyen, Hieu and Nguyen, Minh and Luong, Minh-Thang}, |
|
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {MTet: Multi-domain Translation for English and Vietnamese}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
|
|
``` |