|
--- |
|
license: apache-2.0 |
|
base_model: mnaylor/mega-base-wikitext |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: mega-base-multiple-choice-fp16-v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mega-base-multiple-choice-fp16-v4 |
|
|
|
This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6932 |
|
- Accuracy: 0.4964 |
|
- Precision: 0.4964 |
|
- Recall: 0.5023 |
|
- F1: 0.4993 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1024 |
|
- eval_batch_size: 1024 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 24000 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 34 | 0.6932 | 0.4970 | 0.4971 | 0.5023 | 0.4997 | |
|
| No log | 2.0 | 68 | 0.6932 | 0.4975 | 0.4975 | 0.5026 | 0.5001 | |
|
| No log | 3.0 | 102 | 0.6932 | 0.4974 | 0.4974 | 0.5020 | 0.4997 | |
|
| No log | 4.0 | 136 | 0.6932 | 0.4995 | 0.4995 | 0.5043 | 0.5019 | |
|
| No log | 5.0 | 170 | 0.6932 | 0.4975 | 0.4975 | 0.5023 | 0.4999 | |
|
| No log | 6.0 | 204 | 0.6932 | 0.4987 | 0.4987 | 0.5043 | 0.5015 | |
|
| No log | 7.0 | 238 | 0.6932 | 0.4960 | 0.4961 | 0.5026 | 0.4993 | |
|
| No log | 8.0 | 272 | 0.6932 | 0.4967 | 0.4967 | 0.5036 | 0.5002 | |
|
| No log | 9.0 | 306 | 0.6932 | 0.4965 | 0.4966 | 0.5 | 0.4983 | |
|
| No log | 10.0 | 340 | 0.6932 | 0.4964 | 0.4964 | 0.5023 | 0.4993 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|