metadata
base_model: PekingU/rtdetr_r101vd_coco_o365
datasets: keremberke/satellite-building-segmentation
library_name: transformers
license: mit
metrics:
- Average Precision (AP)
- Average Recall (AR)
pipeline_tag: object-detection
tags:
- remote sensing
- object detection
widget:
- src: img.png
output:
url: img.png
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
results:
- task:
type: object-detection
dataset:
name: keremberke/satellite-building-segmentation
type: image-segmentation
metrics:
- type: AP (IoU=0.50:0.95)
value: 0.43
name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
- type: AP (IoU=0.50)
value: 0.636
name: AP @ IoU=0.50 | area=all | maxDets=100
- type: AP (IoU=0.75)
value: 0.462
name: AP @ IoU=0.75 | area=all | maxDets=100
- type: AP (IoU=0.50:0.95) small objects
value: 0.241
name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
- type: AP (IoU=0.50:0.95) medium objects
value: 0.513
name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
- type: AP (IoU=0.50:0.95) large objects
value: 0.624
name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
- type: AR (IoU=0.50:0.95) maxDets=1
value: 0.055
name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
- type: AR (IoU=0.50:0.95) maxDets=10
value: 0.327
name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
- type: AR (IoU=0.50:0.95) maxDets=100
value: 0.507
name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
- type: AR (IoU=0.50:0.95) small objects
value: 0.312
name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
- type: AR (IoU=0.50:0.95) medium objects
value: 0.595
name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
- type: AR (IoU=0.50:0.95) large objects
value: 0.712
name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
Model Card
Roof Detection for Remote Sensing task.
Model Details
Model Description
- Model type: Object Detection for Remote Sensing task.
- License: MIT
Model Sources
- GitHub: Jupyter Notebook
- Demo: [Pending]
Limitations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoModelForObjectDetection, AutoImageProcessor
model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")