|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- argilla/CapybaraHermes-2.5-Mistral-7B |
|
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B |
|
base_model: |
|
- argilla/CapybaraHermes-2.5-Mistral-7B |
|
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B |
|
model-index: |
|
- name: KangalKhan-SharpEmerald-7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 66.72 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-SharpEmerald-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.4 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-SharpEmerald-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 63.21 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-SharpEmerald-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 56.52 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-SharpEmerald-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 78.53 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-SharpEmerald-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 62.77 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-SharpEmerald-7B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# KangalKhan-SharpEmerald-7B |
|
|
|
KangalKhan-SharpEmerald-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) |
|
* [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: teknium/OpenHermes-2.5-Mistral-7B |
|
# No parameters necessary for base model |
|
- model: argilla/CapybaraHermes-2.5-Mistral-7B |
|
parameters: |
|
density: 0.6 |
|
weight: 0.5 |
|
- model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B |
|
parameters: |
|
density: 0.6 |
|
weight: 0.5 |
|
merge_method: dare_ties |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Yuma42/KangalKhan-SharpEmerald-7B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-SharpEmerald-7B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |68.86| |
|
|AI2 Reasoning Challenge (25-Shot)|66.72| |
|
|HellaSwag (10-Shot) |85.40| |
|
|MMLU (5-Shot) |63.21| |
|
|TruthfulQA (0-shot) |56.52| |
|
|Winogrande (5-shot) |78.53| |
|
|GSM8k (5-shot) |62.77| |
|
|
|
|