|
--- |
|
pipeline_tag: sentence-similarity |
|
language: |
|
- de |
|
datasets: |
|
- stsb_multi_mt |
|
tags: |
|
- gBERT-large |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- RAG |
|
- retrieval augmented generation |
|
- STS |
|
- MTEB |
|
- mteb |
|
|
|
model-index: |
|
- name: German_Semantic_STS_V2 |
|
results: |
|
- dataset: |
|
config: de |
|
name: MTEB AmazonCounterfactualClassification |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
split: test |
|
type: mteb/amazon_counterfactual |
|
metrics: |
|
- type: accuracy |
|
value: 67.00214132762312 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB AmazonCounterfactualClassification |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
split: validation |
|
type: mteb/amazon_counterfactual |
|
metrics: |
|
- type: accuracy |
|
value: 68.43347639484978 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB AmazonReviewsClassification |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: test |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 39.092 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB AmazonReviewsClassification |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: validation |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 39.146000000000003 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB BlurbsClusteringP2P |
|
revision: a2dd5b02a77de3466a3eaa98ae586b5610314496 |
|
split: test |
|
type: slvnwhrl/blurbs-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 38.680981669842135 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB BlurbsClusteringS2S |
|
revision: 22793b6a6465bf00120ad525e38c51210858132c |
|
split: test |
|
type: slvnwhrl/blurbs-clustering-s2s |
|
metrics: |
|
- type: v_measure |
|
value: 17.624489937027504 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB GermanDPR |
|
revision: 5129d02422a66be600ac89cd3e8531b4f97d347d |
|
split: test |
|
type: deepset/germandpr |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 72.921 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB GermanQuAD-Retrieval |
|
revision: f5c87ae5a2e7a5106606314eef45255f03151bb3 |
|
split: test |
|
type: mteb/germanquad-retrieval |
|
metrics: |
|
- type: mrr_at_5 |
|
value: 85.316 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB GermanSTSBenchmark |
|
revision: e36907544d44c3a247898ed81540310442329e20 |
|
split: test |
|
type: jinaai/german-STSbenchmark |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 84.67696933608695 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB GermanSTSBenchmark |
|
revision: e36907544d44c3a247898ed81540310442329e20 |
|
split: validation |
|
type: jinaai/german-STSbenchmark |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 88.048957974805 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: de |
|
name: MTEB MassiveIntentClassification |
|
revision: 4672e20407010da34463acc759c162ca9734bca6 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 66.25084061869536 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MassiveIntentClassification |
|
revision: 4672e20407010da34463acc759c162ca9734bca6 |
|
split: validation |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 66.44859813084113 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MassiveScenarioClassification |
|
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 72.51176866173503 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MassiveScenarioClassification |
|
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 |
|
split: validation |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 72.02164289227742 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MTOPDomainClassification |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
split: test |
|
type: mteb/mtop_domain |
|
metrics: |
|
- type: accuracy |
|
value: 89.00253592561285 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MTOPDomainClassification |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
split: validation |
|
type: mteb/mtop_domain |
|
metrics: |
|
- type: accuracy |
|
value: 87.70798898071626 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MTOPIntentClassification |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
split: test |
|
type: mteb/mtop_intent |
|
metrics: |
|
- type: accuracy |
|
value: 70.06198929275853 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB MTOPIntentClassification |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
split: validation |
|
type: mteb/mtop_intent |
|
metrics: |
|
- type: accuracy |
|
value: 68.6060606060606 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: de |
|
name: MTEB PawsX |
|
revision: 8a04d940a42cd40658986fdd8e3da561533a3646 |
|
split: test |
|
type: google-research-datasets/paws-x |
|
metrics: |
|
- type: ap |
|
value: 57.47670853851811 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: de |
|
name: MTEB PawsX |
|
revision: 8a04d940a42cd40658986fdd8e3da561533a3646 |
|
split: validation |
|
type: google-research-datasets/paws-x |
|
metrics: |
|
- type: ap |
|
value: 52.85587710877178 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: de |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 50.63839763951755 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB TenKGnadClusteringP2P |
|
revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558 |
|
split: test |
|
type: slvnwhrl/tenkgnad-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 37.996685796529817 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB TenKGnadClusteringS2S |
|
revision: 6cddbe003f12b9b140aec477b583ac4191f01786 |
|
split: test |
|
type: slvnwhrl/tenkgnad-clustering-s2s |
|
metrics: |
|
- type: v_measure |
|
value: 23.71145428041516 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB FalseFriendsGermanEnglish |
|
revision: 15d6c030d3336cbb09de97b2cefc46db93262d40 |
|
split: test |
|
type: aari1995/false_friends_de_en_mteb |
|
metrics: |
|
- type: ap |
|
value: 71.22096746794873 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB GermanSTSBenchmark |
|
revision: e36907544d44c3a247898ed81540310442329e20 |
|
split: test |
|
type: jinaai/german-STSbenchmark |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 84.67698604065061 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB GermanSTSBenchmark |
|
revision: e36907544d44c3a247898ed81540310442329e20 |
|
split: validation |
|
type: jinaai/german-STSbenchmark |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 88.048957974805 |
|
task: |
|
type: STS |
|
--- |
|
|
|
# German_Semantic_STS_V2 |
|
|
|
**Note:** Check out my new, updated models: [German_Semantic_V3](https://huggingface.co/aari1995/German_Semantic_V3) and [V3b](https://huggingface.co/aari1995/German_Semantic_V3b)! |
|
|
|
This model creates german embeddings for semantic use cases. |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
Special thanks to [deepset](https://huggingface.co/deepset/) for providing the model gBERT-large and also to [Philip May](https://huggingface.co/philipMay) for the Translation of the dataset and chats about the topic. |
|
|
|
Model score after fine-tuning scores best, compared to these models: |
|
|
|
| Model Name | Spearman | |
|
|---------------------------------------------------------------|-------------------| |
|
| xlm-r-distilroberta-base-paraphrase-v1 | 0.8079 | |
|
| [xlm-r-100langs-bert-base-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens) | 0.7877 | |
|
| xlm-r-bert-base-nli-stsb-mean-tokens | 0.7877 | |
|
| [roberta-large-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens) | 0.6371 | |
|
| [T-Systems-onsite/<br/>german-roberta-sentence-transformer-v2](https://huggingface.co/T-Systems-onsite/german-roberta-sentence-transformer-v2) | 0.8529 | |
|
| [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) | 0.8355 | |
|
| [T-Systems-onsite/<br/>cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/<br/>cross-en-de-roberta-sentence-transformer) | 0.8550 | |
|
| **aari1995/German_Semantic_STS_V2** | **0.8626** | |
|
|
|
|
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('aari1995/German_Semantic_STS_V2') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2') |
|
model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 1438 with parameters: |
|
``` |
|
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: |
|
``` |
|
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 4, |
|
"evaluation_steps": 500, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 5e-06 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 576, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |
|
The base model is trained by deepset. |
|
The dataset was published / translated by Philip May. |
|
The model was fine-tuned by Aaron Chibb. |