license: apache-2.0
base_model: jondurbin/bagel-34b-v0.2
model-index:
- name: Smaug-34B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 72.43
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 65.79
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 53.99
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 91.87
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 80.86
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 80.52
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 69.63
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 72.58
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.23
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
This model is a finetune of jondurbin's excellent bagel model. This model has not utilised any form of merging.
We created Smaug-34B-v0.1 using a new fine-tuning technique, DPO-Positive (DPOP), and new pairwise preference versions of ARC, HellaSwag, and MetaMath (as well as other existing datasets). We introduce the technique and the full training details in our new paper: https://arxiv.org/abs/2402.13228.
We show that on datasets in which the edit distance between pairs of completions is low (such as in math-based datasets), standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. Using these insights, we design DPOP, a new loss function and training procedure which avoids this failure mode. Surprisingly, we also find that DPOP outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions.
We believe this new approach is generally useful in training across a wide range of model types and downstream use cases, and it powers all of our Smaug models. With the release of our paper and datasets, we are excited for the open source community to continue to build on and improve Smaug and spawn more dragons to dominate the LLM space!
Evaluation Results
Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|
77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 |
Contamination Results
With reference model jondurbin/bagel-34b-v0.2:
ARC | TruthfulQA | GSM8K |
---|---|---|
0.08 | 0.38 | 0.88 |
Citation
Please cite the paper if you use data, model, or method in this repo.
@article{pal2024smaug,
title={Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive},
author={Pal, Arka and Karkhanis, Deep and Dooley, Samuel and Roberts, Manley and Naidu, Siddartha and White, Colin},
journal={arXiv preprint arXiv:2402.13228},
year={2024}
}
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 72.88 |
ENEM Challenge (No Images) | 72.43 |
BLUEX (No Images) | 65.79 |
OAB Exams | 53.99 |
Assin2 RTE | 91.87 |
Assin2 STS | 80.86 |
FaQuAD NLI | 80.52 |
HateBR Binary | 69.63 |
PT Hate Speech Binary | 72.58 |
tweetSentBR | 68.23 |