|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- un_multi |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: un_multi |
|
type: un_multi |
|
args: ar-en |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 40.8245 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2 |
|
|
|
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the un_multi dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3642 |
|
- Bleu: 40.8245 |
|
- Meteor: 0.4272 |
|
- Gen Len: 41.8075 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| |
|
| 5.1584 | 0.5 | 100 | 3.2518 | 30.3723 | 0.3633 | 41.5 | |
|
| 2.1351 | 1.0 | 200 | 0.9929 | 32.9915 | 0.3833 | 41.8225 | |
|
| 0.568 | 1.5 | 300 | 0.4312 | 33.705 | 0.3896 | 42.6225 | |
|
| 0.3749 | 2.0 | 400 | 0.3697 | 36.9316 | 0.4084 | 40.57 | |
|
| 0.2376 | 2.5 | 500 | 0.3587 | 37.6782 | 0.4124 | 41.99 | |
|
| 0.2435 | 3.0 | 600 | 0.3529 | 37.9931 | 0.4128 | 42.02 | |
|
| 0.1706 | 3.5 | 700 | 0.3531 | 39.9972 | 0.4252 | 41.8025 | |
|
| 0.165 | 4.0 | 800 | 0.3514 | 39.3155 | 0.42 | 41.0275 | |
|
| 0.1273 | 4.5 | 900 | 0.3606 | 40.0765 | 0.4234 | 41.6175 | |
|
| 0.1307 | 5.0 | 1000 | 0.3550 | 40.4468 | 0.428 | 41.72 | |
|
| 0.0926 | 5.5 | 1100 | 0.3603 | 40.5454 | 0.4307 | 41.765 | |
|
| 0.1096 | 6.0 | 1200 | 0.3613 | 40.5691 | 0.4298 | 42.31 | |
|
| 0.0826 | 6.5 | 1300 | 0.3642 | 40.8245 | 0.4272 | 41.8075 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|