metadata
datasets:
- TryOnVirtual/VITON-HD-IMAGE
language:
- en
base_model:
- zhengchong/CatVTON
Fashibles
Installation
Create a conda environment & Install requirments
conda create -n catvton python==3.9.0
conda activate catvton
cd CatVTON-fashable # or your path to CatVTON project dir
pip install -r requirements.txt
Run the Project First Init
This will full the pretrained freeze models
python app.py \
--output_dir="resource/demo/output" \
--mixed_precision="bf16" \
--allow_tf32
Run as an API Server
python app_api.py
API Call Sample Payload
import axios from "axios";
const form = new FormData();
form.append("person_image", "/Users/ahmadabdulnasirshuaib/wsp/ml-al/clothChanger/assets/istockphoto-521071031-612x612.jpg");
form.append("cloth_image", "/Users/ahmadabdulnasirshuaib/wsp/ml-al/clothChanger/resource/demo/example/condition/upper/24083449_54173465_2048.jpg");
form.append("cloth_type", "upper");
const options = {
method: 'POST',
url: 'http://127.0.0.1:8000/process_images',
headers: {
'Content-Type': 'multipart/form-data; boundary=---011000010111000001101001',
'User-Agent': 'insomnia/9.3.3'
},
data: '[form]'
};
axios.request(options).then(function (response) {
console.log(response.data);
}).catch(function (error) {
console.error(error);
});
Gradio App
To deploy the Gradio App for CatVTON on your machine, run the following command, and checkpoints will be automatically downloaded from HuggingFace.
CUDA_VISIBLE_DEVICES=0 python app.py \
--output_dir="resource/demo/output" \
--mixed_precision="bf16" \
--allow_tf32
When using bf16
precision, generating results with a resolution of 1024x768
only requires about 8G
VRAM.