alecmontero's picture
End of training
58a160d verified
metadata
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloomz-560m
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: BLOOM-Meta4Types-ft-ES
    results: []

BLOOM-Meta4Types-ft-ES

This model is a fine-tuned version of bigscience/bloomz-560m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6658
  • Roc Auc: 0.6521
  • Hamming Loss: 0.2255
  • F1 Score: 0.5792
  • Accuracy: 0.5098
  • Precision: 0.5611
  • Recall: 0.6085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Roc Auc Hamming Loss F1 Score Accuracy Precision Recall
No log 1.0 204 1.4085 0.5227 0.3775 0.0874 0.0490 0.9333 0.0500
No log 2.0 408 1.3092 0.5569 0.4036 0.3425 0.2353 0.7464 0.4360
1.9965 3.0 612 1.2200 0.5497 0.2304 0.4634 0.4510 0.7327 0.5574
1.9965 4.0 816 1.4996 0.5843 0.3235 0.3965 0.3922 0.4177 0.4519
0.6193 5.0 1020 1.0759 0.5823 0.2271 0.4488 0.5098 0.6180 0.4070
0.6193 6.0 1224 1.8243 0.5808 0.2614 0.4892 0.3775 0.5688 0.5824
0.6193 7.0 1428 1.6658 0.6521 0.2255 0.5792 0.5098 0.5611 0.6085
0.202 8.0 1632 2.0491 0.5856 0.2075 0.4864 0.5441 0.5844 0.4447
0.202 9.0 1836 2.2174 0.6241 0.1944 0.5733 0.5588 0.6183 0.5504
0.0338 10.0 2040 2.1754 0.6265 0.1993 0.5693 0.5539 0.6197 0.5399

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1