alexdg19's picture
End of training
b56ab03
|
raw
history blame
2.87 kB
metadata
license: mit
base_model: alexdg19/bert_large_xsum_samsum
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: bert_large_xsum_samsum3
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.5313

bert_large_xsum_samsum3

This model is a fine-tuned version of alexdg19/bert_large_xsum_samsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2354
  • Rouge1: 0.5313
  • Rouge2: 0.2827
  • Rougel: 0.4367
  • Rougelsum: 0.4357
  • Gen Len: 30.939

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 164 1.1370 0.5599 0.3246 0.4748 0.4743 29.0122
No log 2.0 328 1.2659 0.5494 0.3033 0.4623 0.4612 27.0671
No log 3.0 492 1.4188 0.5198 0.2726 0.436 0.4346 28.6768
0.6603 4.0 656 1.5628 0.5391 0.2905 0.4555 0.4553 28.6159
0.6603 5.0 820 1.9045 0.5237 0.2774 0.4326 0.4321 31.5854
0.6603 6.0 984 2.0670 0.5199 0.2689 0.4251 0.4243 31.8049
0.1722 7.0 1148 1.9653 0.5269 0.2703 0.4342 0.4333 28.5122
0.1722 8.0 1312 2.1921 0.5296 0.2765 0.4393 0.4387 31.8354
0.1722 9.0 1476 2.4336 0.5299 0.2825 0.4399 0.4388 31.7988
0.052 10.0 1640 2.2354 0.5313 0.2827 0.4367 0.4357 30.939

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1