|
--- |
|
license: mit |
|
base_model: alexdg19/bert_large_xsum_samsum |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bert_large_xsum_samsum3 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.5313 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_large_xsum_samsum3 |
|
|
|
This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum](https://huggingface.co/alexdg19/bert_large_xsum_samsum) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2354 |
|
- Rouge1: 0.5313 |
|
- Rouge2: 0.2827 |
|
- Rougel: 0.4367 |
|
- Rougelsum: 0.4357 |
|
- Gen Len: 30.939 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 164 | 1.1370 | 0.5599 | 0.3246 | 0.4748 | 0.4743 | 29.0122 | |
|
| No log | 2.0 | 328 | 1.2659 | 0.5494 | 0.3033 | 0.4623 | 0.4612 | 27.0671 | |
|
| No log | 3.0 | 492 | 1.4188 | 0.5198 | 0.2726 | 0.436 | 0.4346 | 28.6768 | |
|
| 0.6603 | 4.0 | 656 | 1.5628 | 0.5391 | 0.2905 | 0.4555 | 0.4553 | 28.6159 | |
|
| 0.6603 | 5.0 | 820 | 1.9045 | 0.5237 | 0.2774 | 0.4326 | 0.4321 | 31.5854 | |
|
| 0.6603 | 6.0 | 984 | 2.0670 | 0.5199 | 0.2689 | 0.4251 | 0.4243 | 31.8049 | |
|
| 0.1722 | 7.0 | 1148 | 1.9653 | 0.5269 | 0.2703 | 0.4342 | 0.4333 | 28.5122 | |
|
| 0.1722 | 8.0 | 1312 | 2.1921 | 0.5296 | 0.2765 | 0.4393 | 0.4387 | 31.8354 | |
|
| 0.1722 | 9.0 | 1476 | 2.4336 | 0.5299 | 0.2825 | 0.4399 | 0.4388 | 31.7988 | |
|
| 0.052 | 10.0 | 1640 | 2.2354 | 0.5313 | 0.2827 | 0.4367 | 0.4357 | 30.939 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|