|
--- |
|
language: |
|
- es |
|
license: cc-by-4.0 |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
datasets: |
|
- xtreme |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: Me llamo Álvaro y vivo en Barcelona (España). |
|
- text: Marie Curie fue profesora en la Universidad de Paris. |
|
- text: La Universidad de Salamanca es la universidad en activo más antigua de España. |
|
pipeline_tag: token-classification |
|
base_model: bert-base-multilingual-cased |
|
model-index: |
|
- name: SpanMarker with bert-base-multilingual-cased on xtreme/PAN-X.es |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: xtreme/PAN-X.es |
|
type: xtreme |
|
split: eval |
|
metrics: |
|
- type: f1 |
|
value: 0.9186626746506986 |
|
name: F1 |
|
- type: precision |
|
value: 0.9231154938993816 |
|
name: Precision |
|
- type: recall |
|
value: 0.9142526071842411 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker with bert-base-multilingual-cased on xtreme/PAN-X.es |
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [xtreme/PAN-X.es](https://huggingface.co/datasets/xtreme) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Maximum Entity Length:** 8 words |
|
- **Training Dataset:** [xtreme/PAN-X.es](https://huggingface.co/datasets/xtreme) |
|
- **Languages:** es |
|
- **License:** cc-by-4.0 |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------------------------| |
|
| LOC | "Salamanca", "Paris", "Barcelona (España)" | |
|
| ORG | "ONU", "Fútbol Club Barcelona", "Museo Nacional del Prado" | |
|
| PER | "Fray Luis de León", "Leo Messi", "Álvaro Bartolomé" | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("alvarobartt/bert-base-multilingual-cased-ner-spanish") |
|
# Run inference |
|
entities = model.predict("Marie Curie fue profesora en la Universidad de Paris.") |
|
``` |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
|
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:-------|:----| |
|
| Sentence length | 3 | 6.4642 | 64 | |
|
| Entities per sentence | 1 | 1.2375 | 24 | |
|
|
|
### Training Hyperparameters |
|
|
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 2 |
|
|
|
### Training Results |
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.3998 | 1000 | 0.0388 | 0.8761 | 0.8641 | 0.8701 | 0.9223 | |
|
| 0.7997 | 2000 | 0.0326 | 0.8995 | 0.8740 | 0.8866 | 0.9341 | |
|
| 1.1995 | 3000 | 0.0277 | 0.9076 | 0.9019 | 0.9047 | 0.9424 | |
|
| 1.5994 | 4000 | 0.0261 | 0.9143 | 0.9113 | 0.9128 | 0.9473 | |
|
| 1.9992 | 5000 | 0.0234 | 0.9231 | 0.9143 | 0.9187 | 0.9502 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SpanMarker: 1.3.1.dev |
|
- Transformers: 4.33.3 |
|
- PyTorch: 2.0.1+cu118 |
|
- Datasets: 2.14.5 |
|
- Tokenizers: 0.13.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
``` |
|
@software{Aarsen_SpanMarker, |
|
author = {Aarsen, Tom}, |
|
license = {Apache-2.0}, |
|
title = {{SpanMarker for Named Entity Recognition}}, |
|
url = {https://github.com/tomaarsen/SpanMarkerNER} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |