Bemba
Collection
Experimental automatic speech recognition models developed for the Bemba language
•
32 items
•
Updated
This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.6721 | 1.0 | 32 | 2.4561 | 1.5330 | 0.6440 |
2.2935 | 2.0 | 64 | 1.9492 | 0.9650 | 0.3391 |
1.7575 | 3.0 | 96 | 1.5668 | 0.8598 | 0.2686 |
1.4295 | 4.0 | 128 | 1.3788 | 0.7765 | 0.2352 |
1.1759 | 5.0 | 160 | 1.2559 | 0.7586 | 0.2371 |
0.9792 | 6.0 | 192 | 1.1833 | 0.7439 | 0.2093 |
0.8037 | 7.0 | 224 | 1.1540 | 0.6931 | 0.2193 |
0.6423 | 8.0 | 256 | 1.1380 | 0.6857 | 0.1988 |
0.462 | 9.0 | 288 | 1.1553 | 0.6905 | 0.2055 |
0.3141 | 10.0 | 320 | 1.1998 | 0.7169 | 0.2213 |
0.2089 | 11.0 | 352 | 1.2249 | 0.6661 | 0.1869 |
0.1359 | 12.0 | 384 | 1.2399 | 0.7071 | 0.2051 |
0.0831 | 13.0 | 416 | 1.2533 | 0.7148 | 0.2138 |
0.0553 | 14.0 | 448 | 1.2758 | 0.6553 | 0.1773 |
0.0334 | 15.0 | 480 | 1.3205 | 0.6406 | 0.1766 |
0.0286 | 16.0 | 512 | 1.2915 | 0.6486 | 0.1774 |
0.0248 | 17.0 | 544 | 1.3042 | 0.6628 | 0.1861 |
0.0177 | 18.0 | 576 | 1.3364 | 0.6628 | 0.1930 |
0.0131 | 19.0 | 608 | 1.3429 | 0.6505 | 0.1832 |
0.0116 | 20.0 | 640 | 1.3442 | 0.6763 | 0.2078 |
0.0105 | 21.0 | 672 | 1.3807 | 0.6548 | 0.1787 |
0.0056 | 22.0 | 704 | 1.3839 | 0.6480 | 0.1775 |
0.005 | 23.0 | 736 | 1.3965 | 0.6402 | 0.1775 |
0.0059 | 24.0 | 768 | 1.3936 | 0.6605 | 0.1941 |
0.0055 | 25.0 | 800 | 1.3850 | 0.6471 | 0.1871 |
Base model
openai/whisper-small