Beijuka's picture
End of training
4a45e3a verified
metadata
library_name: transformers
language:
  - bem
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - BIG-C/BEMBA
metrics:
  - wer
model-index:
  - name: Whisper Small Bemba - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BEMBA
          type: BIG-C/BEMBA
          args: 'config: bemba, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.6407617746274392

Whisper Small Bemba - Beijuka Bruno

This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3624
  • Wer: 0.6408
  • Cer: 0.1701

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.6721 1.0 32 2.4561 1.5330 0.6440
2.2935 2.0 64 1.9492 0.9650 0.3391
1.7575 3.0 96 1.5668 0.8598 0.2686
1.4295 4.0 128 1.3788 0.7765 0.2352
1.1759 5.0 160 1.2559 0.7586 0.2371
0.9792 6.0 192 1.1833 0.7439 0.2093
0.8037 7.0 224 1.1540 0.6931 0.2193
0.6423 8.0 256 1.1380 0.6857 0.1988
0.462 9.0 288 1.1553 0.6905 0.2055
0.3141 10.0 320 1.1998 0.7169 0.2213
0.2089 11.0 352 1.2249 0.6661 0.1869
0.1359 12.0 384 1.2399 0.7071 0.2051
0.0831 13.0 416 1.2533 0.7148 0.2138
0.0553 14.0 448 1.2758 0.6553 0.1773
0.0334 15.0 480 1.3205 0.6406 0.1766
0.0286 16.0 512 1.2915 0.6486 0.1774
0.0248 17.0 544 1.3042 0.6628 0.1861
0.0177 18.0 576 1.3364 0.6628 0.1930
0.0131 19.0 608 1.3429 0.6505 0.1832
0.0116 20.0 640 1.3442 0.6763 0.2078
0.0105 21.0 672 1.3807 0.6548 0.1787
0.0056 22.0 704 1.3839 0.6480 0.1775
0.005 23.0 736 1.3965 0.6402 0.1775
0.0059 24.0 768 1.3936 0.6605 0.1941
0.0055 25.0 800 1.3850 0.6471 0.1871

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.19.1