bluryar's picture
Upload folder using huggingface_hub
426aeec verified
|
raw
history blame
2.16 kB
---
library_name: transformers
license: other
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: train_2025-01-23-00-42-56
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_2025-01-23-00-42-56
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the smoltalk_chinese dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8719 | 1.7649 | 5000 | 1.9466 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
### MISC
```python
_register_template(
name="deepseekr1",
default_system="You are a helpful and harmless assistant. You should think step-by-step. Output your thoughts in <think></think> tags.",
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
format_system=StringFormatter(slots=["{{content}}"]),
format_user=StringFormatter(
slots=[
"<|User|>{{content}}<|Assistant|>"
]
),
stop_words=["<|end▁of▁sentence|>"],
)
```