|
--- |
|
license: mit |
|
base_model: cointegrated/rut5-base-multitask |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flux-mt5-base-multitask-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flux-mt5-base-multitask-model |
|
|
|
This model is a fine-tuned version of [cointegrated/rut5-base-multitask](https://huggingface.co/cointegrated/rut5-base-multitask) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Rouge1: 0.0399 |
|
- Rouge2: 0.0123 |
|
- Rougel: 0.0358 |
|
- Rougelsum: 0.0358 |
|
- Gen Len: 11.5531 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.0 | 1.0 | 10877 | nan | 0.0399 | 0.0123 | 0.0358 | 0.0358 | 11.5531 | |
|
| 0.0 | 2.0 | 21754 | nan | 0.0399 | 0.0123 | 0.0358 | 0.0358 | 11.5531 | |
|
| 0.0 | 3.0 | 32631 | nan | 0.0399 | 0.0123 | 0.0358 | 0.0358 | 11.5531 | |
|
| 0.0 | 4.0 | 43508 | nan | 0.0399 | 0.0123 | 0.0358 | 0.0358 | 11.5531 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|